A finger points at a stack of yellow plastic plates sandwiched together like on a bookshelf. A grey metal rectangle holds the top together and black plastic sticks off to the left. The top of the pack has copper and nickel (or some other silver-colored metal) tabs pointing up out of the assembly.

Tearing Into A Sparky Sandwich

We’re still in the early days of modern EV infrastructure, so minor issues can lead to a full high voltage pack replacement given the lack of high voltage-trained mechanics. [Ed’s Garage] was able to source a Spark EV battery pack that had succumbed to a single bad cell and takes us along for the disassembly of the faulty module.

The Spark EV was the predecessor to the more well-known Chevy Bolt, so its nearly ten year old systems might not reflect the state-of-the-art in EV batteries, but they are certainly more modern than the battery in your great-grandmother’s Baker Electric. The Li-ion polymer pouch cells are sandwiched together with cooling and shock absorbing panels to keep the cells healthy and happy, at least in theory.

In a previous video, [Ed’s Garage] takes apart the full pack and shows how the last 2P16S module has assumed a darker color on its yellow plastic, seeming to indicate that it wasn’t receiving sufficient cooling during its life in the car. It would seem that the cooling plates inside the module weren’t quite up to the task. These cells are destined for other projects, but it doesn’t seem like this particular type of battery module would be too difficult to reassemble and put back in a car as long as you could get the right torque settings for the compression bolts.

If you’re looking for other EV teardowns, might we suggest this Tesla Model S pack or one from a passively-cooled Nissan Leaf?

Continue reading “Tearing Into A Sparky Sandwich”

An image of the surface of Europa. The top half of the sphere is illuminated with the bottom half dark. The surface is traced with lineae, long lines across its surface of various hues of grey, white, and brown. The surface is a brown-grey, somewhat like Earth's Moon with the highest brightness areas appearing white.

Europa Clipper Asks Big Questions Of The Jovian Moon

Are we alone? While we certainly have lots of strange lifeforms to choose from as companions here on our blue marble, we have yet to know if there’s anything else alive out there in the vastness of space. One of the most promising places to look in our own solar neighborhood is Europa.

People in bunny suits swarm underneath the main section of the Europa Clipper. It is predominantly white, with various tubes and structures of silver metal protruding and many pieces of yellow kapton tape are visible. A large orange module is strapped to the side around the middle of the semi-cylindrical craft. Several other dark orange metallic plates that are much smaller adorn various pieces of the craft. It looks both chonky and delicate at the same time. Underneath its icy surface, Europa appears to have a sea that contains twice as much water as we have here on Earth. Launching later this year and arriving in 2030, NASA’s Europa Clipper will provide us with our most up-close-and-personal look at the Jovian Moon yet. In conjunction with observations from the ESA’s Jupiter Icy Moons Explorer (JUICE), scientists hope to gain enough new data to see if the conditions are right for life.

Given the massive amounts of radiation in the Jovian system, Europa Clipper will do 50 flybys of the moon over the course of four years to reduce damage to instruments as well as give it windows to transmit data back to Earth with less interference. With enough planning and luck, the mission could find promising sites for a future lander that might be able to better answer the question of if there actually is life on other worlds.

Some of the other moons around Jupiter could host life, like Io. Looking for life a little closer? How about on our nearest neighbor, Venus, or the ever popular Mars?

That’s A Lot Of Building Systems

The only thing makers like more than building things is making systems to build things. [Eric Hunting] has compiled a list of these modular building systems.

You’ve certainly heard of LEGO, grid beam, and 80/20, but what about Troxes or Clickaloo? The 70 page document has a helpful index at the beginning arranged in families of similar systems followed by information about each and some helpful links.

As the well-known XKCD comic likes to point out, the issue with standards is that they tend to proliferate instead of getting adopted, so this might be a good list to check before you start to implement your brilliant spin on modular construction. It’s possible the right system is already waiting for you.

The list certainly isn’t exhaustive, but it’s a good place to start. If you do have the modular building system that will solve all the world’s problems though, by all means, send it to the tipsline!

Team members Madeleine Laitz, left, and lead author Dane deQuilettes stand in front of a tidy lab bench equipped with oscilloscopes and computers. Laitz has a snazzy yellow jacket that pops compared to the neutrals and blues of the rest of the picture.

More Progress On Perovskite Solar Cells

Perovskites hold enormous promise for generating solar energy, with the potential to provide lighter and cheaper cells than those made from silicon. Unfortunately, the material breaks down too rapidly to be practical for most applications. But thanks to some recent research, we now have a better understanding of the nanoscale changes that happen during this breakdown, and how to combat it.

The research is focused on the topic of passivation, which seeks to increase the useful lifespan of perovskites by studying the surface interface where they meet other materials. Most of the perovskite material is a perfect latticework of atoms, but this structure is broken at the surface. This atomically “jagged” interface introduces losses which only get worse over time. Currently, the best way to address this issue is to essentially seal the surface with a very thin layer of hexylammonium bromide.

While this technique significantly simplified the passivation process when it was discovered, the effect had yet to be adequately characterized to further advance the field. According to lead author, [Dane deQuilettes], “This is the first paper that demonstrates how to systematically control and engineer surface fields in perovskites.”

Prefer to roll your own cells? How about a DIY dye sensitized cell or this thermionic converter model?

A white woman with a long ponytail in a green apron looks down at a mannequin head with pasta coming out of its chin. There is an orange pasta gun sticking out of the back of its head and a chef's hat on its head. It looks vaguely like a bust of Ramses.

Goatee Pasta Maker Makes Us Hunger For Hair

Some hacks are pure acts of whimsy, and [Simone Giertz] is back to her roots with this Goatee Pasta Maker.

If violence to mannequin heads is upsetting, the video may be a bit NSFW (to warn you now that you already clicked on it). What started out as a pasta-making version of those Play-Doh hair people quickly morphed into a more scaled-back endeavor with simply extruding pasta through the mannequin’s chin to create pasta hair.

Initial attempts at using a basketball to extrude clay (used as a pasta stand-in) through holes in a mannequin’s head were unsuccessful, so [Giertz] turned to a more conventional pasta gun to handle the pasta extrusion. Since the gun didn’t have the volume necessary to produce a full head of hair, or even a respectable mustache, the next mannequin’s chin was subjected to multiple drill holes for pasta to escape in a hairy tangle.

The results aren’t exactly appetizing, but it definitely does make edible pasta. If you’re looking for more pasta hacks, how about ramen in an edible package, flat pack pasta, or Barilla’s Open Source pasta tool?

Continue reading “Goatee Pasta Maker Makes Us Hunger For Hair”

An open top of a black PC case. Inside we can see an aluminum extruded mini PC case inside the 5" optical drive bay. A Samsung SSD sits along the back wall of the case and a flash drive sits between the front of the 3D printed "drive" and the actual mini PC.

Outdated HP Microserver Gets A New Brain

What to do if you have a really cool old HP MicroServer that just can’t keep up with the demands of today? [jacksonliam] decided to restomod it by installing a mini PC into the drive bay.

The HP N54L MicroServer was still running, but its soldered CPU and non-standard motherboard made a simple upgrade impossible. Evaluating the different options, [jacksonliam] decided to save the case and PSU by transplanting an Intel Alder Lake mini PC into the drive bay with 3D printed brackets and heat set inserts.

Selecting a fanless “router” model to increase reliability, he was able to find an M.2 to mini-SAS adapter to attach the four drive cage to the NVME slot on the new PC. Power is supplied via the 12 V line on the ATX power supply and one of the mini PC’s Ethernet lines was broken out to a 3D printed PCI slot cover.

Looking for more ways to rejuvenate an old computer? How about putting a Mac mini inside an old iMac or a Raspberry Pi inside an Apple ][?

A red hot crucible is held with metal tongs above a white plaster mold. The mold is held in a bright pink silicone sleve atop a metal pan on a wooden workbench. Red cheese wax holds the sleeve to a metal funnel connected to a vacuum cleaner.

Lost Print Vacuum Casting In A Microwave

Hacks are rough around the edges by their nature, so we love it when we get updates from makers about how they’ve improved their process. [Denny] from Shake the Future has just provided an update on his microwave casting process.

Sticking metal in a microwave certainly seems like it would be a bad idea at first, but with the right equipment it can work quite nicely to develop a compact foundry. [Denny] walks us through the process start to finish in this video, including how to build the kilns, what materials to use, and how he made several different investment castings using the process. The video might be worth watching just for all the 3D printed tools he’s built to aid in the process — it’s a great example of useful 3D prints to accompany your fleet of little plastic boats.A hand holds a very detailed copper ring. It is inscribed with the words "Open Source Hardware" and the open gear logo associated with open source hardware. It looks kinda like a class ring.

A lot of the magic happens with a one minute on and six minutes off cycle set by a simple plug timer. This allows a more gradual ramp to burn out the PLA or resin than running the microwave at full blast which can cause some issues with the kiln, although nothing catastrophic as demonstrated. Vacuum is applied to the mold with a silicone sleeve cut from a swimming cap while pouring the molten metal into the mold to draw the metal into the cavities and reduce imperfections.

We appreciate the shout out to respirators while casting or cutting the ceramic fiber mat. Given boric acid’s effects, [PDF] you might want to use safety equipment when handling it as well or just use water as that seems like a valid option.

If you want to see where he started check out this earlier version of the microwave kiln and how he used it to make an aluminum pencil.

Continue reading “Lost Print Vacuum Casting In A Microwave”