Dentist Tool Hardware Inspires Non-Slip Probe Tips

Cross-pollination between different industries can yield interesting innovations, and a few years ago [John Wiltrout] developed some non-slip meter probe adapters. He recently used our tips line to share some details that you won’t see elsewhere, letting us know how the idea came to be.

It started with [John] being frustrated by issues that will sound familiar: probes did not always want to stay in place, and had a tendency to skid around at the slightest provocation. This behavior gets only more frustrating as boards and components get smaller. John was also frustrated by the general inability to reliably probe through barriers like solder masking, oxidation, and conformal treatments on circuit boards. Continue reading “Dentist Tool Hardware Inspires Non-Slip Probe Tips”

Formation Flying Does More Than Look Good

Seeing airplanes fly in formation is an exciting experience at something like an air show, where demonstrations of a pilot’s skill and aircraft technology are on full display. But there are other reasons for aircraft to fly in formation as well. [Peter] has been exploring the idea that formation flight can also improve efficiency, and has been looking specifically at things like formation flight of UAVs or drones with this flight planning algorithm.

Aircraft flying in formation create vortices around the wing tips, which cause drag. However, another aircraft flying through those vortices will experience less drag and more efficient flight. This is the reason birds instinctively fly in formation as well. By planning paths for drones which will leave from different locations, meet up at some point to fly in a more efficient formation, and then split up close to their destinations, a significant amount of energy can potentially be saved. Continue reading “Formation Flying Does More Than Look Good”

MIT Engineers Pioneer Cost-Effective Protein Purification For Cheaper Drugs

There are a wide variety of protein-based drugs that are used to treat various serious conditions. Insulin is perhaps the most well-known example, which is used for life-saving treatments for diabetes. New antibody treatments also fall into this category, as do various vaccines.

A significant cost element in the production of these treatments is the purification step, wherein the desired protein is separated from the contents of the bioreactor it was produced in. A new nanotech discovery from MIT could revolutionize this area, making these drugs cheaper and easier to produce.

Continue reading “MIT Engineers Pioneer Cost-Effective Protein Purification For Cheaper Drugs”

Desktop EDM Hack Chat

Join us on Wednesday, June 28 at noon Pacific for the Desktop EDM Hack Chat with Cooper Zurad!

Whether you know it or not, chances are pretty good you’ve run into the results of electrical discharge machining at some point. EDM is the go-to machining method for so many applications, from making complex injection molding tooling to putting impossibly small holes into hardened steel, EDM gets the jobs that make traditional machining techniques weep.

At its heart, EDM is really simple; it’s just making sparks to selectively erode metal. In practice, though, it’s way more complicated than that. There’s the CNC aspect to control the cutting tool, the dielectric to cool things and flush away the swarf, and the precision control of the electric discharge. It’s all just complicated and expensive enough that it’s hard to find anyone doing EDM on the hobbyist level.

join-hack-chatHard, but not impossible. Desktop EDM is doable, and to help us understand the challenges involved we’ve invited Cooper Zurad to the Hack Chat. Cooper has quite a bit of experience with the related and somewhat less energetic ECM, or electrochemical machining, and is now turning the knowledge gained there to desktop EDM. Make sure to join us with your questions about machining with electricity.

Our Hack Chats are live community events in the Hackaday.io Hack Chat group messaging. This week we’ll be sitting down on Wednesday, June 28 at 12:00 PM Pacific time. If time zones have you tied up, we have a handy time zone converter.

[Featured image by Qw5646, CC BY-SA 3.0]

Networking With Balloons

Starlink has been making tremendous progress towards providing world-wide access to broadband Internet access, but there are a number of downsides to satellite-based internet such as the cluttering of low-Earth orbit, high expense, and moodiness of CEO. There are some alternatives if standard Internet access isn’t available, and one of the more ambitious is providing Internet access by balloon. Project Loon is perhaps the most famous of these (although now defunct), but it’s also possible to skip the middleman and build your own high-altitude balloon capable of connection speeds of 500 Kbps.

[Stephen] has been working on this project for a few months and while it doesn’t support a full Internet connection, the downlink on the high altitude balloon is fast enough to send high-resolution images in near-real-time. This is thanks to a Raspberry Pi Zero on board the balloon that is paired with an STM32 board which handles the radio communication on a RF4463 transceiver module. The STM32 acts as an intermediary or buffer to ensure reliable information is sent out on the radio, rather than using the Pi directly. [Stephen] also wrote a large chunk of the software responsible for handling all of these interactions, optimized for balloon flight specifically.

The blog post for this project was written a few weeks ago with a reported first launch date for the system already passed, so we will eagerly anticipate the results and the images he was able to gather using this system. Eventually [Stephen] hopes the downlink will be fast enough for video as well.Balloons are an underappreciated tool as well, and this isn’t the only way that they can be used to help send radio signals from place to place.

Meshtastic For The Greater Good

Last week, my city was hit by a tornado. That’s not surprising here in Oklahoma, and thankfully this event was an F0 or possibly even an EF0 — a really weak tornado. Only a couple roofs collapsed, though probably half the houses in town are going to need roof repairs, thanks to the combination of huge hail and high winds. While it wasn’t too bad, power did go down in a few places around town, and this led to an interesting series of events.

Chat messages were coming in like this: “That was a [power] flicker, yeah. Even took down my Internet.” Followed by “Whee, [fiber Internet] got knocked out and now Starlink has too many clouds in the way.” And after ten minutes of silence, we got a bit worried to see “Time to hide under a bed. … Is cell service back?” It is a bit spooky to think about trying to help neighbors and friends after a disaster, in the midst of the communication breakdown that often follows. If he had needed help, and had no working communications, how long would it have taken for us to go check on him?
Continue reading “Meshtastic For The Greater Good”

Never Drill In The Wrong Place, With This Camera!

It’s fair to say that one of the biggest advances for the electronic constructor over the last decade or so has been the advent of inexpensive small-order PCB manufacture. That said, there are still plenty who etch their own boards, and for them perhaps the most fiddly part of the process comes in drilling holes accurately. It’s to aid in this task that [John McNelly] has created a camera with a periscope, to give the drill bit perfect alignment with the hole.

The idea is simple enough, an off-the-shelf all-in-one microscope camera points sideways at a mirror allowing it to look upwards. The viewport is placed under the drill and the crosshairs on the microscope are lined up with the end of the drill. Then the board can be placed on top and the pad lined up with the crosshairs, and a perfectly placed hole can be drilled. It’s a beautiful piece of lateral thinking which we like, as it ends that lottery of slightly off-centre holes. You can see it in glorious portrait-mode action in the video below the break.

Oddly this isn’t the first PCB drilling microscope we’ve shown you. but it may well be the more elegant of the two.

Continue reading “Never Drill In The Wrong Place, With This Camera!”