Recharging Drones On The Go With A Supercharger

If Techcrunch is to be believed, our skies will soon be filled with delivery robots, ferrying tacos and Chinese food and Amazon purchases from neighborhood-area dispatch stations to your front door. All of this is predicated on the ability of quadcopters to rapidly recharge their batteries, or at the very least swap out batteries automatically.

For their Hackaday Prize entry, [frasanz], [ferminduaso], and [david canas] are building the infrastructure that will make delivery drones possible. It’s a drone supercharger, or a robot that grabs a drone, swaps out the battery, and sends it off to deliver whatever is in its cargo compartment.

This build is a droneport of sorts, designed to have a drone land on it, have a few stepper motors and movable arms spring into action, and replace the battery with a quick-change mechanism. This can be significantly more difficult than it sounds — you need to grab the drone and replace the battery, something that’s easy for human eyes and hands, but much harder for a few sensors and aluminum extrusion.

To change batteries, the team is just letting the drone land somewhere on a platform that’s a few feet square. Arms then move it, pushing the drone to the center, and a second arm then moves in to swap the battery. The team is using an interesting locking cam solution to clamp the battery to the drone. It’s much easier for a machine to connect than the standard XT-60 connector found on race quads.

Is this the project the world needs? Quite possibly so. Drones are going to be awesome once battery life improves. Until then, we’ll have to live with limited flight times and drone superchargers.

Continue reading “Recharging Drones On The Go With A Supercharger”

Are There Better Things To Hurl Into Orbit Than A Sports Car?

We’ve been having a lively discussion behind the scenes here at Hackaday, about SpaceX’s forthcoming launch of their first Falcon Heavy rocket. It will be carrying [Elon Musk]’s red Tesla Roadster, and should it be a successful launch, it will place the car in an elliptical orbit round the Sun that will take it to the Martian orbit at its furthest point.

On one hand, it seems possible that [Musk]’s sports car will one day be cited by historians as the exemplar of the excesses of the tech industry in the early 21st century. After all, to spend the millions of dollars required to launch the largest reusable space launch platform ever created, and then use it to hurl an electric vehicle into orbit round the Sun seems to be such a gratuitous waste of resources, an act of such complete folly as to be criminal.

Surely even given that there is a reasonable chance of a first launch ending in fiery destruction it must be worth their while canvassing the universities and research institutions of the world with the offer of a free launch, after all there must be a significant amount of science that would benefit from some cost-free launch capacity! It seems a betrayal of the famous “Why explore space” letter from the associate science director of NASA to a nun who questioned the expenditure while so many in the developing world were starving.

Testing

But on the other hand, first launches of rockets are a hazardous endeavour, as the metaphorical blue touchpaper is lit on the world’s largest firework for the first time. Satellites are expensive devices, and it would be a foolhardy owner who entrusted their craft to a launch vehicle with a good chance of a premature splashdown.

Launch of first Arianne 5. Not where you want your pricey satellite.

First launches traditionally carry a ballast rather than a payload, for example NASA have used tanks of water for this purpose in the past. SpaceX has a history of novelty payloads for their test launches; their first Dragon capsule took a wheel of cheese into space and returned it to Earth. We picture Musk looking around a big warehouse and saying, “well, we got a lot of cars!”

There is a fascinating question to be posed by the launch of the car, just what did they have to do to it to ensure that it could be qualified for launch? Satellite manufacture is an extremely exacting branch of engineering, aside from the aspect of ensuring that a payload will work it must both survive the launch intact and not jeopardise it in any way. It’s safe to say that the Roadster will not have to function while in orbit as the roads of California will be far away, but cars are not designed with either the stresses of launch or the transition to zero gravity and the vacuum of space in mind. Will a glass windscreen originally specified for a Lotus Elise on the roads of Norfolk shatter during the process and shower the inside of the craft with glass particles, for example? There must have been an extensive space qualification programme for it to pass, from vibration testing through removal of any hazards such as pressurised gases or corrosive chemicals, if only the folks at SpaceX would share some its details that would make for a fascinating story in itself.

Space Junk

So the Tesla Roadster is a huge publicity stunt on behalf of SpaceX, but it serves a purpose that would otherwise have to have been taken by an unexciting piece of ballast. It will end up as space junk, but in an orbit unlikely to bring it into contact with any other craft. If its space-suited dummy passenger won’t be providing valuable data on the suit’s performance we’d be extremely surprised, and when it is finally retrieved in a few centuries time it will make a fascinating exhibit for the Smithsonian.

Given a huge launch platform and the chance to fill it with a novelty item destined for orbit,the Hackaday team stepped into overdrive with suggestions as to what might be launched were they in charge. They varied from Douglas Adams references such as a heart of gold or a whale and a bowl of petunias should the rocket abort and the payload crash to earth, to a black monolith and a few ossified ape remains to confuse space historians. We briefly evaluated the theory that the Boring Company is in fact a hiding-in-plain-sight construction organisation for a forthcoming Evil Lair beneath the surface of Mars, before concluding that maybe after all the car is a pretty cool thing to use as ballast for a first launch.

It may be reaching towards seven decades since the first space programmes successfully sent rockets beyond the atmosphere with the aim of exploration, but while the general public has become accustomed to them as routine events they remain anything but to the engineers involved. The Falcon Heavy may not have been developed by a government, but it represents every bit as astounding an achievement as any of its predecessors. Flinging an electric vehicle into orbit round the Sun is a colossal act of showmanship and probably a waste of a good car, but it’s also more than that. In hundreds of years time the IoT devices, apps, 3D printers, quadcopters or whatever else we toil over will be long forgotten. But there will be a car orbiting the Sun that remains a memorial to the SpaceX engineers who made its launch possible, assuming it doesn’t blow up before it gets there. What at first seemed frivolous becomes very cool indeed.

Hackaday Links Column Banner

Hackaday Links: January 21, 2018

You know what next week is? Sparklecon! What is it? Everybody hangs out at the 23b Hackerspace in Fullerton, California. Last year, people were transmuting the elements, playing Hammer Jenga, roasting marshmallows over hot resistors, and generally having a really great time. It’s the party for our sort of people, and there are talks on 3D projection mapping and a hebocon. I can’t recommend this one enough.

The STM32F7 is a very, very powerful ARM Cortex-M7 microcontroller with piles of RAM, oodles of Flash, DSP, and tons of I/O. It’s a relatively new part, so are there any breakout or dev boards for it? Sure thing. [satsha] used a desktop CNC mill to create what is probably the simplest possible breakout board for the STM32F7. There’s not much here — just some parts for power and a few LEDs — but this is all you need to get one of these powerful chips up and running.

It’s cold and dark and you can’t fly RC airplanes in January. It’s not because planes and quadcopters don’t work in the cold (they should work better, but I’d love to see a graph of battery temperature and density altitude), it’s that your hands don’t work in the cold. What’s the solution? Just strap some motorcycle handwarmer thingies onto your transmitter. With a 2200 battery strapped to the back, you’ll get about an hour of runtime for these handwarmers.

The BBC is reporting the latest advancement in Hyperloop technology. Is it a fundamentally different way of digging tunnels that isn’t simply scaling down the size of tunnel boring machines? No. Is it improvements in material science that would allow the seals on a 500-mile-long steel pressure chamber to exist? No. Does this latest advancement mitigate the ‘hillbillies with guns’ problem that would turn every Hyperloop car into a literal bullet screaming towards one of the most spectacular deaths possible? No. The chief executive of the Virgin Hyperloop project has something better in mind. A smartphone app, “that would connect future Hyperloop passengers with other modes of transport on arrival.”

New Part Day: MEMS Loudspeakers

MEMS, or Micro ElectroMechanical Systems, are the enabling technology that brings us smartphones, quadcopters, tire pressure monitors, and a million other devices we take for granted today. At its most basic level, MEMS is simply machining away silicon wafers to make not electronic parts, but electromechanical parts. The microphone in your cell phone isn’t an electret mic you would find in an old brick phone from the 80s — it’s a carefully crafted bit of silicon, packed in epoxy, and hanging off a serial bus.

Despite the incredible success of MEMS technology, there is still something in your smartphone that’s built on 19th-century technology. Loudspeakers haven’t changed ever, and the speaker in your newest iThing is still a coil of wire and some sort of cone.

Now there’s finally a MEMS loudspeaker A company called USound has developed the first loudspeaker that isn’t just a bunch of wire and a magnet. This is a speaker built from a silicon wafer that can be as small as 3 mm square, and as thin as 1 mm. Since these speakers are built on silicon, you can also add an amp right onto the package. This is quite literally a speaker on a chip, and we’d bet that there are already engineers at Samsung looking at stuffing this into a flagship phone.

ST and USound announced these extraordinarily small speakers would actually be made, but so far it’s been just that — an announcement. This changed at CES where ST demonstrated VR goggles with multiple MEMS speakers. Does this mean MEMS speakers are on their way to Mouser and Digikey? We eagerly await the product announcement and demo dev board kit.

WiFi Alliance Announces Upcoming Fixes To WPA2

Last October, before Intel’s Management Engine was completely broken and the Spectre and Meltdown exploits drove Intel’s security profile further into the ground, we had a problem with wireless networking. WPA2 was cracked with KRACK, the Key Reinstallation Attack. The sky isn’t falling quite yet, but the fact remains that the best WiFi security currently available isn’t very secure at all.

This week, at the Consumer Electronics Show in Las Vegas, the WiFi Alliance announced they would introduce security enhancements in 2018. While it’s not said in the press release if this is a reaction to KRACK, the smart money says yes, this is indeed a reaction to KRACK.

Four new capabilities are outlined in the upcoming release of WPA3 this year. One feature will be protection for users who do not choose complex passwords. A second feature will simplify the process of configuring security on devices that have no display, ostensibly like that little button on your router that you’ve never pressed. The third feature will ‘strengthen user privacy in open networks’, while the fourth, the one we really care about, will add a 192-bit security suite which will, ‘further protect WiFi networks with higher security requirements’.

While most devices currently in service should have a patch for KRACK by now, there will always be thousands of unpatched devices, because, really, who is in charge of the router at your local coffee shop? We’re not sure about the timing of the WiFi Alliance’s announcement of upcoming security improvements: coming during CES when the entirety of the tech press is gawking at manned quadcopters and an endless variety of voice assistants. But we have to say better late than never.

Upgrading A 3D Printer With OctoPrint

If you’ve been hanging around 3D printing communities, or reading the various 3D printing posts that have popped up here on Hackaday, you’ve almost certainly heard of OctoPrint. Created and maintained by Gina Häußge, OctoPrint allows you to turn an old computer (or more commonly a small ARM board like the Raspberry Pi or BeagleBone) into a network-accessible control panel for your 3D printer. Thanks to a thriving collection of community developed plugins, it can even control other hardware such as lights, enclosure heaters, smart plugs, or anything else you can think to hook onto the GPIO pins of your chosen ARM board. The project has become so popular that the new Prusa i3 MK3 has a header on the control board specifically for connecting a Pi Zero W running OctoPrint.

Even still, I never personally “got” OctoPrint. I was happy enough with my single printer connected to my computer and controlled directly from my slicer over USB. The majority of the things I print are of my own design, so when setting up the printer it only seemed logical that I would have it connected to the machine I’d be doing my designing on. If I’m sitting at my computer, I just need to rotate my chair to the right and I’m at my printer. What do I need to control the thing over WiFi for?

But things got tricky when I wanted to set up a second printer to help with speeding up larger projects. I couldn’t control them both from the same machine, and while I could print from SD on the second printer if I really had to, the idea seemed painfully antiquated. It would be like when Scotty tried talking into the computer’s mouse in “Voyage Home”. Whether I “got it” or not, I was about to dive headfirst into the world of OctoPrint.

Continue reading “Upgrading A 3D Printer With OctoPrint”

Frankendrones: Toy Quads With A Hobby Grade Boost

If you’re not involved in the world of remote controlled vehicles, you may not know there’s a difference between “toy” and “hobby” grade hardware. For those in the RC community, a toy is the kind of thing you’ll find at a big box store: cheap, works OK, but lacking in features and build quality. On the other hand, hobby hardware is generally considered to be of higher quality and performance, as well as being more modular. At the risk of oversimplification: if you bought it ready to go from a store it’s probably a toy, and if you built it from parts it would generally be considered hobby grade.

But with the rock bottom prices of toy quadcopters, that line in the sand is having a harder time than ever holding some in the community back. The mashup of toy and hobby grade components is giving rise to the concept of “frankendrones” that combine the low cost of toy hardware with key upgrades from the hobby realm. Quadcopter blogger [garagedrone] has posted a roundup of modifications made to the Bayangtoys X16, a $99 quadcopter which is becoming popular in the scene.

Some of the modifications are easy enough for anyone to do. Swapping out the original propellers for ones meant for the DJI Phantom 3 increases performance and doesn’t even require tools. If you want to go a bit further down the rabbit hole, you can cut off the X16’s battery connector and replace it with a standard XT60. That lets you use standard 3S LiPo batteries, which are cheaper and higher capacity than the proprietary ones the toy shipped with.

If you have a 3D printer, there are also a number of upgraded parts you can print which will bolt right onto the X16. Payload adapters, landing gear, and GoPro mounts are all just a few clicks (and some filament) away. This library of 3D printable parts is made possible in part because the X16’s frame is itself a clone of another toy quadcopter, the popular Syma X8C. So anything listed as compatible with the Syma X8C should work with the X16 (and vice versa).

Finally, if you really want to take the X16 to the next level, you can swap out the flight controller with an open source and better supported hobby grade model. Some of these flight controllers and associated new receivers can end up costing about half as much as the X16 did to begin with, but the vast improvement in performance and capability should more than make up for the cost.

We’ve covered previous efforts to increase the performance of low cost quadcopters in the past, as well as builds that put frugality front and center. It seems that no matter what your budget is a screaming angel of death is available if you want it.

Thanks to [Calvin] for the tip.

Continue reading “Frankendrones: Toy Quads With A Hobby Grade Boost”