500cc Of 4-Wheel Off-Road Fun

Who among us hasn’t at some point thought of building a little vehicle, and better still, a little off-road vehicle for a few high-octane rough-terrain adventures. [Made in Poland] has, and there he is in a new video with a little off-road buggy.

The video which we’ve paced below the break is quite long, and it’s one of those restful metalworking films in which we see the finished project take shape bit by bit. In this case the buggy has a tubular spaceframe, with front suspension taken from a scrap quad and a home-made solid rear axle. For power there’s a 500cc Suzuki two-cylinder motorcycle engine, with a very short chain drive from its gearbox to that axle. The controls are conventional up to a point, though we’d have probably gone for motorcycle style handlebars with a foot shift rather than the hand-grip shift.

The final machine is a pocket drift monster, and one we’d certainly like to have a play with. We’d prefer some roll-over protection and we wonder whether the handling might be improved were the engine sprung rather than being part of a huge swing-arm, but it doesn’t appear to interfere with the fun. If you fancy a go yourself it’s surprisingly affordable to make a small vehicle, just build a Hacky Racer.

Continue reading “500cc Of 4-Wheel Off-Road Fun”

Fixing A Busted Fluke While Fighting A Wonky Schematic

Fluke meters have been around for a long, long time. Heck, we’ve got a Fluke 73 that we bought back in 1985 that’s still a daily driver. But just because they’ve been making them forever doesn’t mean they last forever, and getting a secondhand meter back in the game can be a challenge. That’s what [TheHWCave] learned with his revival of a wonky eBay Fluke 25, an effort that holds lessons for anyone in the used Fluke market.

Initial inspection of the meter showed encouragingly few signs of abuse, somewhat remarkable for something built for the military in the early 1980s. A working display allowed a few simple diagnostics revealing that the ammeter functions seemed to work, but not the voltmeter and ohmmeter functions. [TheHWCave]’s teardown revealed a solidly constructed unit with no obvious signs of damage or blown fuses. Thankfully, a service schematic was available online, albeit one with a frustrating lack of detail, confusing test point nomenclature, and contradictory component values.

Despite these hurdles, [TheHWCave] was able to locate the culprit: a bad fusible power resistor. Finding a direct replacement wasn’t easy given the vagaries of the schematic and the age of the instrument, but he managed to track down a close substitute cheap enough to buy in bulk. He searched through 40 units to find the one closest to the listed specs, which got the meter going again. Fixing the bent pin also gave the meter back its continuity beeper, always a mixed blessing.

If you’re in the market for a meter but can’t afford the Fluke name, picking up a busted meter and fixing it up like this might be one way to go. But are they really worth the premium? Well, kinda yes.

Continue reading “Fixing A Busted Fluke While Fighting A Wonky Schematic”

Better Battery Design Through Science

Before the age of lithium batteries, any project needing to carry its own power had to rely on batteries that were much less energy-dense and affordable. In many ways, we take modern lithium technology for granted, and can easily put massive batteries in our projects by the standards of just a few decades ago. While the affordability of lithium batteries has certainly decreased the amount of energy we need to put in to our projects to properly size batteries, there’s still a lot of work to be done if you’re working on a bigger project or just want to get the maximize the efficiency and effectiveness of your DIY battery pack.

The main problem with choosing a battery, as [ionworks] explains, is that batteries can’t be built for both high energy and high power, at least not without making major concessions for weight or cost. After diving in to all of the possible ways of customizing a battery, the battery guide jumps in to using PyBaMM to perform computational modeling of potential battery designs to hopefully avoid the cumbersome task of testing all of the possible ways of building a battery. With this tool virtually all of a battery’s characteristics can be simulated and potential problems with your setup can be uncovered before you chose (or start production of) a specific battery system.

While customizing a battery pack to this extent might not be a consideration for most of us unless the project is going to be big enough to run something like an electric car or a whole-house generator, it’s a worthwhile tool to know about as even smaller projects like ebikes can benefit from choosing the right cell for the application. Some of the nuances of battery pack design can be found in this guide to building packs from the standard 18650 cells.

Header: Lead holder, CC BY-SA 3.0 .

Custom Hat Gives Vintage Mitutoyo Calipers A New Lease On Life

Metrology fans are usually at least a little bit in love with Mitutoyo, and rightfully so. The Japanese company has been making precision measuring instruments for the better part of 100 years, and users appreciate their precision almost as much as the silky smooth feel of their tools. If you can afford it, a Mitutoyo caliper is quite an addition to your toolbox.

As good as they are, though, they’re not perfect, which is what led to this clever Mitutoyo digital caliper hack by [turbanedengineer]. The calipers in question, a digital set from the early 1980s, happen to have a unique history with a tangential Hackaday angle — they belonged to [Dhaval], mechanical engineer and avid motorcyclist who happens to be the late elder brother of our own [Anool Mahidharia].

The tool, in need of a little TLC, made its way to [turbanedengineer] who first restored the broken battery contacts. Once powered up again, it became apparent that while the caliper’s native metric measurements were spot on, the internal conversion to inches was considerably off. This led [turbanedengineer] to the data port on the tool, which is intended to send serial data to an external computer for logging measurements. After a little experimentation to nail down the data format, he prototyped a tiny circuit using an ATtiny85 and an OLED display that reads the caliper data, converts metric to inches, and displays both measurements on the screen. The prototype led to a more permanent version, which cleverly sits over the original display and taps into the data port without any free wires. The video below shows the very slick results.

Our hearts go out to [Anool] and his family for their loss, and we tip our hats to [turbanedengineer] for his thoughtful and respectful hack of a storied tool. We know that anthropomorphizing tools makes no rational sense, but we think it’s safe to say that a tool like this has a soul, and it’s probably happy to be back in the game.

Continue reading “Custom Hat Gives Vintage Mitutoyo Calipers A New Lease On Life”

Hacker Tactic: Multi-Design Panels

Last time, we talked about single-PCB-design panels, all the cool aspects of it, including some cost savings and handling convenience. Naturally, you might wonder, and many did – can you put multiple different PCBs on a single panel? The answer is “yes, without a doubt!” The tool we used last time, KiKit, will not be as helpful here, so we’ll be looking elsewhere.

Making multi-PCB panels can help you save money, naturally, but it can also make your assembly a whole lot easier, and it can bring you hacking to a whole new level. It sure helped with mine! You might have already learned that some fabs scoff at multi-design panels and add surcharges. Well, you’ll be delighted to learn that there are more hacker-friendly fabs out there, too.

Developing PCBs In Bulk

So far, I’ve worked on about 300 different PCB designs, with half of them available in my monorepo. I’ve assembled and tested just about half of these. You might guess that this would cost a lot of money, and that assembly would take a fair bit of time, but I have some tricks up my sleeve. For a start, you can easily order PCBs 10-12 times more cheaply if you do multi-panel.

Continue reading “Hacker Tactic: Multi-Design Panels”

Carbon–Cement Supercapacitors Proposed As An Energy Storage Solution

Although most energy storage solutions on a grid-level focus on batteries, a group of researchers at MIT and Harvard University have proposed using supercapacitors instead, with their 2023 research article by [Nicolas Chanut] and colleagues published in Proceedings of the National Academy of Sciences (PNAS). The twist here is that rather than any existing supercapacitors, their proposal involves conductive concrete (courtesy of carbon black) on both sides of the electrolyte-infused insulating membrane. They foresee this technology being used alongside green concrete to become part of a renewable energy transition, as per a presentation given at the American Concrete Institute (ACI).

Functional carbon-cement supercapacitors (connected in series) (Credit: Damian Stefaniuk et al.)

Putting aside the hairy issue of a massive expansion of grid-level storage, could a carbon-cement supercapacitor perhaps provide a way to turn the concrete foundation of a house into a whole-house energy storage cell for use with roof-based PV solar? While their current prototype isn’t quite building-sized yet, in the research article they provide some educated guesstimates to arrive at a very rough 20 – 220 Wh/m3, which would make this solution either not very great or somewhat interesting.

The primary benefit of this technology would be that it could be very cheap, with cement and concrete being already extremely prevalent in construction due to its affordability. As the researchers note, however, adding carbon black does compromise the concrete somewhat, and there are many questions regarding longevity. For example, a short within the carbon-cement capacitor due to moisture intrusion and rust jacking around rebar would surely make short work of these capacitors.

Swapping out the concrete foundation of a building to fix a short is no small feat, but maybe some lessons could be learned from self-healing Roman concrete.

Embedded Python: MicroPython Is Amazing

In case you haven’t heard, about a month ago MicroPython has celebrated its 11th birthday. I was lucky that I was able to start hacking with it soon after pyboards have shipped – the first tech talk I remember giving was about MicroPython, and that talk was how I got into the hackerspace I subsequently spent years in. Since then, MicroPython been a staple in my projects, workshops, and hacking forays.

If you’re friends with Python or you’re willing to learn, you might just enjoy it a lot too. What’s more, MicroPython is an invaluable addition to a hacker’s toolkit, and I’d like to show you why. Continue reading “Embedded Python: MicroPython Is Amazing”