capsule shown with magnetic fields represented with arrows

Pill Sized Scoop Of Your Internals

Taking a look inside the human body has never been easier — just swallow a camera in the shape of a pill. However, what is not quite as easy is retrieving a piece of whatever you’re viewing. This is exactly what researchers from HIT Shenzhen have attempted to solve with their magnetic capsule bot.

When traditional procedures want to take a sample somewhere in the intestinal tract they generally require somewhat invasive procedures sticking something up…well you know. With this pill, robot magnetic control allows physicians to choose exactly where and when to take a sample, all without shoving unpleasant objects into…again you know.

A magnetic field is generated to open the capsule and suck liquids inside. This traps a sample that can be retrieved through later bowel movements. The technology hasn’t been tested on a living patient yet, but but animal trials are planned for the foreseeable future.

Check out the fine details with the paper itself here. Biomedical engineering is always an interesting topic with so much potential for more hacking. We at Hackaday are no strangers to this wonderful world of bodily hacks.

How Regulations Are Trying To Keep Home Battery Installs Safe

The advent of rooftop solar power generation was a huge step forward for renewable energy. No longer was generating electricity the sole preserve of governments and major commercial providers; now just about any homeowner could start putting juice into the grid for a few thousand dollars. Since then, we’ve seen the rise of the home battery, which both promises to make individual homes more self sufficient, whilst also allowing them to make more money selling energy to the grid where needed.

Home batteries are becoming increasingly popular, but as with any new home utility, there come risks. After all, a large capacity battery can present great danger if not installed or used correctly. In the face of these dangers, authorities in jurisdictions around the world have been working to ensure home batteries are installed with due regard for the safety of the occupants of the average home.

Continue reading “How Regulations Are Trying To Keep Home Battery Installs Safe”

Redox on desktop.

Who Wants A Rusty Old Smartphone?

If we’re talking about oxidized iron… probably nobody. If we’re talking about Rust the programming language, well, that might be a different story. Google agrees, and is working on bringing the language into Android. That’s not enough for [Paul Sanja], who has the first Redox OS smartphone.

It’s alive!

Redox OS is a Unix-like operating system written entirely in Rust, and somehow we haven’t covered it until now. Unlike Asterinas, a project to recreate the Linux kernel in Rust, Redox has few pretensions of being anything but its own thing, and that’s great! On desktop, Redox has a working windowing system and many utilities, including a basic browser in the form of NetSurf.

It’s claims to be source-compatible with Linux and BSD programs, and partially POSIX compliant. A certain someone around here might want to try it as a daily driver. The header image is a desktop screenshot, because there’s more to see there and it fits our aspect ratio.

On smartphones, it… boots. Some smartphones, anyway. It’s actually a big first step. That booting is possible is actually thanks to the great work put in by the Postmarket OS team to get Uboot working on select android devices. That uboot loader doesn’t need to load the Linux-based Postmarket OS. It can be used for anything compatible. Like, say, Redox OS, as [Paul] shows us.

Of course, Redox OS has no drivers for the touchscreen or anything else, so at the moment that rusty smartphone can only boot to a login screen. But thanks to Rust, you can rest assured that login screen hasn’t got any memory leaks! Jokes aside, this is a great start and we’re hoping to see more.

Redox is a promising project on mobile or desktop, and its development seems a much better use of time and effort than fighting over Rust in the Linux kernel.

RTINGS 10-Year Equivalent TV Longevity Update With Many Casualties

For the past two-and-half years Canadian consumer testing outfit RTINGS has been running an accelerated aging experiment across a large number of TVs available to a North-American audience. In their most recent update, we not only  find out about the latest casualties, but also the impending end of the experiment after 18,000 hours — as the TVs are currently failing left and right as they accelerate up the ascending ramp of the bathtub curve.

Some of these LEDs are dead, others are just wired in series. (Credit: RTINGS.com)
Some of these LEDs are dead, others are just wired in series.

The dumbest failure type has to be the TVs (such as the Sony X90J) where the failure of a single dead backlight LED causes the whole TV to stop working along with series-wired LED backlights where one dead LED takes out a whole strip or zone. Other failures include degrading lightguides much as with our last update coverage last year, which was when edge-lit TVs were keeling over due to overheating issues.

Detailed updates can be found on the constantly updating log for the experiment, such as on the failed quantum dot diffusor plate in a TCL QLED TV, as the quantum dots have degraded to the point of green being completely missing. Although some OLEDs are still among the ‘living’, they’re showing severe degradation – as pictured above – after what would be the equivalent of ten years of typical usage.

Once the experiment wraps up it will be fascinating to see who the survivors are, and what the chances are of still using that shiny new TV ten years from now.

Continue reading “RTINGS 10-Year Equivalent TV Longevity Update With Many Casualties”

Dodecahedron Speaker Is Biblically Accurate

Once upon a time, many radios and TVs only came with a single (mono) speaker. Then someone decided all audio hardware should have as many speakers as we have ears. That was until [Olivia] came along, and whipped up a dodecahedron speaker as an educational piece for workshops. Really, it shows us that twelve speakers should be the minimum standard going forward.

The speaker relies on a 3D-printed frame. The dodecahedron shell is assembled from 12 individual faces, each of which hosts a small individual speaker. Multichannel audio fans shouldn’t get too excited—all twelve speakers are wired to the same input in four groups of three, making this essentially an exceptionally complicated mono device. It might sound silly, but it’s actually a great way to deliver audio in many directions all at once. [Olivia] even went to the effort of running some sweep tests in anechoic and reverberation chambers to see how they performed, which is a fun bit of extra detail in the build log.

[Olivia] notes that these unique speakers are great as a beginner workshop build. They’re easy to modify in various ways to suit different ideas or levels of ability, and they can be made for less than $30 a pop. We’d love to see an advanced version that maybe packed in a lithium battery and a Bluetooth module to make them a standalone audio device. Video after the break.

Continue reading “Dodecahedron Speaker Is Biblically Accurate”

How A Failed Video Format Spawned A New Kind Of Microscope

The video cassette tape was really the first successful home video format; discs just couldn’t compete back in the early days. That’s not to say nobody tried, however, with RCA’s VideoDisc a valiant effort that ultimately fell flat on its face. However, the forgotten format did have one benefit, in that it led to the development of an entirely new kind of microscope, as explained by IEEE Spectrum.

The full story is well worth the read; the short version is that it all comes down to capacitance. RCA’s VideoDisc format was unique in that it didn’t use reflective surfaces or magnetic states to represent data. Instead, the data was effectively stored as capacitance changes. As a conductive stylus rode through an undulating groove in a carbon-impregnated PVC disc, the capacitance between the stylus and the disc changed. This capacitance was effectively placed into a resonant circuit, where it would alter the frequency over time, delivering an FM signal that could be decoded into video and audio by the VideoDisc player.

The VideoDisc had a capacitance sensor that could detect such fine changes in capacitance, that it led to the development of the Scanning Capacitance Microscope (SCM). The same techniques used to read and inspect VideoDiscs for quality control could be put to good use in the field of semiconductors. The sensors were able to be used to detect tiny changes in capacitance from dopants in a semiconductor sample, and the SCM soon became an important tool in the industry.

It’s perhaps a more inspiring discovery than when cheeky troublemakers figured out you could use BluRay diodes to pop balloons. Still fun, though. An advertisement for the RCA VideoDisc is your video after the break.

Continue reading “How A Failed Video Format Spawned A New Kind Of Microscope”

Build Your Own 6K Camera

[Curious Scientist] has been working with some image sensors. The latest project around it is a 6K camera. Of course, the sensor gives you a lot of it, but it also requires some off-the-shelf parts and, of course, some 3D printed components.

An off-the-shelf part of a case provides a reliable C mount. There’s also an IR filter in a 3D-printed bracket.

Continue reading “Build Your Own 6K Camera”