Full Scale Styrofoam DeLorean Finally Takes Flight

It’s 2025 and we still don’t have flying cars — but we’ve got this full-scale flying DeLorean prop from [Brian Brocken], and that’s almost as good. It’s airborne and on camera in the video embedded below.

We’ve written about this project before; first about the mega-sized CNC router [Brian] used to carve the DeLorean body out of Styrofoam panels, and an update last year that showed the aluminum frame and motorized louvers and doors.

Well, the iconic gull-wing doors are still there, and still motorized, and they’ve been joined by a tire-tilting mechanism for a Back To The Future film-accurate flight mode. With the wheels down, the prop can use them to steer and drive, looking for all the world like an all-white DMC-12.

The aluminum frame we covered before is no longer in the picture, though. It’s been replaced by a lighter, stiffer version made from carbon fibre. It’s still a ladder frame, but now with carbon fiber tubes and “forged” carbon fiber corners made of tow and resin packed in 3D printed molds. There’s been a tonne of work documented on the build log since we last covered this project, so be sure to check it out for all the details.

Even in unpainted white Styrofoam, it’s surreal to see this thing take off; it’s the ultimate in practical effects, and totally worth the wait. Honestly, with talent like [Brian] out there its a wonder anyone still bothers with CGI, economics aside.

Thanks to [Brian] for the tip! If you have a project you’ve hit a milestone with, we’d love to see it, even if it doesn’t trigger the 80s nostalgia gland we apparently all have embedded in our brains these days. Send us a tip!

Continue reading “Full Scale Styrofoam DeLorean Finally Takes Flight”

Building Your Own DVB-S2 Receiver

Generally, a digital TV tuner is something you buy rather than something you make yourself. However, [Johann] has always been quite passionate about the various DVB transmission standards, and decided he wanted to build his own receiver just for the fun of it.

[Johann]’s build is designed to tune in DVB-S2 signals transmitted from satellites, and deliver that video content over a USB connection. When beginning his build, he noted it was difficult to find DVB reception modules for sale as off-the-shelf commercial parts. With little to nothing publicly available, he instead purchased a “Formuler F1 Plug & Play DVB-S2 HDTV Sat Tuner” and gutted it for the Cosy TS2M08-HFF11 network interface module (NIM) inside. He then paired this with a Cypress CY7C68013A USB bridge to get the data out to a PC. [Johann] then whipped up a Linux kernel driver to work with the device.

[Johann] doesn’t have hardcore data on how his receiver performs, but he reports that it “works for me.” He uses it in South Germany to tune in the Astra 19.2E signal.

We don’t talk a lot about DVB these days, since so much video content now comes to us over the Internet. However, we have still featured some nifty DVB hacks in the past. If you’re out there tinkering with your own terrestrial or satellite TV hardware, don’t hesitate to notify the tipsline!

Robot Balances Ball On A Plate

Imagine trying to balance a heavy metal ball bearing on a cafeteria tray. It’s not the easiest thing in the world! In fact, it’s perhaps a task better automated, as [skulkami3000] demonstrates with this robotic build.

The heart of the build is a flat platform fitted with a resistive touchscreen panel on top. The panel is hooked up to a Teensy 4.0 microcontroller. When a heavy ball bearing is placed on the touch panel, the Teensy is thus able to accurately read its position. It then controls a pair of NEMA 17 stepper motors via TCM2208 drivers in order to tilt the panel in two axes in order to keep the ball in the centre of the panel. Thanks to its quick reactions and accurate sensing, it does a fine job of keeping the ball centred, even when the system is perturbed.

Projects like these are a great way to learn the basics of PID control. Understanding these concepts will serve you well in all sorts of engineering contexts, from controlling industrial processes to building capable quadcopter aircraft. Continue reading “Robot Balances Ball On A Plate”

Jenny’s Daily Drivers: KDE Linux

Over this series test-driving operating systems, we’ve tried to bring you the unusual, the esoteric, or the less mainstream among the world of the desktop OS. It would become very boring very quickly of we simply loaded up a succession of Linux distros, so we’ve avoided simply testing the latest Debian, or Fedora.

That’s not to say that there’s no space for a Linux distro on these pages if it is merited though, as for example we marked its 30th anniversary with a look at Slackware. If a distro has something interesting to offer it’s definitely worth a look, which brings us to today’s subject.

KDE Linux is an eponymous distro produced by the makers of the KDE Plasma desktop environment and associated applications, and it serves as a technical demo of what KDE can be, a reference KDE-based distribution, and an entirely new desktop Linux distribution all in one. As such, it always has the latest in all things KDE, but aside from that perhaps what makes it even more interesting is that as an entirely new distribution it has a much more modern structure than many of the ones we’re used to that have their roots in decades past. Where in a traditional distro the system is built from the ground up on install, KDE Linux is an immutable base distribution, in which successive versions are supplied as prebuilt images  on which the user space is overlaid. This makes it very much worth a look. Continue reading “Jenny’s Daily Drivers: KDE Linux”

This Device Is A Real Page Turner

You can read e-books on just about anything—your tablet, your smartphone, or even your PC. However, the interface can be lacking somewhat compared to a traditional book—on a computer, you have to use the keyboard or mouse to flip the pages. Alternatively, you could do what [NovemberKou] did, and build a dedicated page-turning device.

The device was specifically designed for use with the Kindle for Mac or Kindle for PC reader apps, allowing the user to peruse their chosen literature without using the keyboard to change pages. It consists of a thumb wheel, rotary encoder, and an Arduino Pro Micro mounted in a 3D printed shell. The Pro Micro is set up to emulate a USB keyboard, sending “Page Up” or “Page Down” key presses as you turn the thum bwheel in either direction.

Is it a frivolous device with a very specific purpose? Yes, and that’s why we love it. There’s something charming about building a bespoke interface device just to increase your reading pleasure, and we wholeheartedly support it.

Continue reading “This Device Is A Real Page Turner”

Meta’s Ray-Ban Display Glasses And The New Glassholes

It’s becoming somewhat of a running gag that any device or object will be made ‘smart’ these days, whether it’s a phone, TV, refrigerator, home thermostat, headphones or glasses. This generally means somehow cramming a computer, display, camera and other components into the unsuspecting device, with the overarching goal of somehow making it more useful to the user and not impacting its basic functionality.

Although smart phones and smart TVs have been readily embraced, smart glasses have always been a bit of a tough sell. Part of the problem here is of course that most people do not generally wear glasses, between people whose vision does not require correction and those who wear e.g. contact lenses. This means that the market for smart glasses isn’t immediately obvious. Does it target people who wear glasses anyway, people who wear sunglasses a lot, or will this basically move a smart phone’s functionality to your face?

Smart glasses also raise many privacy concerns, as their cameras and microphones may be recording at any given time, which can be unnerving to people. When Google launched their Google Glass smart glasses, this led to the coining of the term ‘glasshole‘ for people who refuse to follow perceived proper smart glasses etiquette.

Continue reading “Meta’s Ray-Ban Display Glasses And The New Glassholes”

IPhone Air Still Apparently Repairable Despite Its Compact Construction

Miniaturization is a trend that comes and goes in the cellular phone space. For a while, our phones were all getting smaller, then they started getting bigger again as screens expanded to show us ever more content and advertising. The iPhone air is going back the other way, with a design that aims to sell based on its slimness. [iFixit] reckons that despite its diminutive dimensions, it should still be quite repairable.

“Thinner usually means flimsier, harder to fix, and more glued-down parts, but the iPhone Air proves otherwise,” states Elizabeth Chamberlain for the repair outlet. Much of this comes down to clever design, that makes repair possible at the same time as ensuring compactness. A big part of this is the way that Apple made the bottom half of the phone pretty much just battery. Most of the actual electronic components are on a logic board up by the camera. Segmenting the phone in this way makes it easier to access commonly-replaced parts like the battery without having to pull a lot of other parts out of the way first.

[iFixit] refers to this as flattening the “disassembly tree”—minimizing the number of components you have to touch to replace what you’re there to fix. In this regard, the thinness of the iPhone Air is actually a boon. The phone is so thin, it wasn’t possible to stack multiple components on top of each other, so everything is easier to get to. The design is also reasonably modular, which should make routine repairs like USB C port swaps relatively straightforward.

Whatever smartphone you’re working on, it often helps to have a disassembly guide to ensure you don’t wreck it when you’re trying to fix something. [iFixit] remains a stellar resource in that regard. Continue reading “IPhone Air Still Apparently Repairable Despite Its Compact Construction”