DIY Hydroelectric Plant

Impressive Off-Grid Hydroelectric Plant Showcases The Hacker Spirit

We all know the story arc that so many projects take: Build. Fail. Improve. Fail. Repair. Improve. Fail. Rebuild. Success… Tweak! [Kris Harbour] is no stranger to the process, as his impressive YouTube channel testifies.

DIY Hydroelectric Plant
An IOT charge controller makes power management easier.

Among all of [Kris’] off-grid DIY adventures, his 500 W micro hydroelectric turbine has us really pumped up. The impressive feat of engineering features Arduino/IOT based controls, 3D printed components, and large number of custom-machined components, with large amounts of metal fabrication as well.

[Kris] Started the build with a Pelton wheel sourced from everyone’s favorite online auction site paired with an inexpensive MPPT charge controller designed for use with solar panels. Eventually the turbine was replaced with a custom built unit designed to produce more power. An Arduino based turbine valve controller and an IOT enabled charge controller give [Kris] everything he needs to manage the hydroelectric system without having to traipse down to the power house. Self-cleaning 3D printed screens keep intake maintenance to a minimum. Be sure to check out a demonstration of the control system in the video below the break.

As you watch the Hydro electric system playlist, you see the hacker spirit run strong throughout the initial build, the failures, the engineering, the successes, and then finally, the tweaking for more power. Because why stop at working when it can be made better, right? We highly recommend checking it out- but set aside some time. The whole series is oddly addictive, and This Hackaday Writer may have spent inordinate amounts of time watching it instead of writing dailies!

Of course, you don’t need to go full-tilt to get hydroelectric power up and running. Even at a low wattage, its always-on qualities mean that even a re-purposed washing machine can be efficient enough to be quite useful.

Thanks to [Mo] for alerting us to the great series via the Tip Line!

Continue reading “Impressive Off-Grid Hydroelectric Plant Showcases The Hacker Spirit”

A portable Bluetooth turntable.

Bluetooth Record Player Puts A New Spin On Vinyl

You know, we were just discussing weird and/or obsolete audio formats in the writers’ dungeon the other day. (By the way, have you ever bought anything on DAT or MiniDisc?) While vinyl is hardly weird or (nowadays) obsolete, the fact that this Bluetooth record player by [JGJMatt] is so modern makes it all the more fantastic.

Not since the Audio-Technica Sound Burger, or Crosley’s semi-recent imitation, have we seen such a portable unit. But that’s not even the most notable part — this thing runs inversely to normal record players. Translation: the record stands still while the the player spins, and it sends the audio over Bluetooth to headphones or a speaker.

Inside this portable player is an Arduino Nano driving a 5 VDC motor with a worm gear box. There really isn’t too much more to this build — mostly power, a needle cartridge, and a Bluetooth audio transmitter. There’s a TTP223 touch module on the lid that allows [JGJMatt] to turn it off with the wave of a hand.

[JGJMatt] says this is a prototype/work-in-progress, and welcomes input from the community. Right now the drive system is good and the Bluetooth is stable and able, but the tone arm has some room for improvement — in tests, it only played a small section of the record and skidded and skittered across the innermost and outermost parts. Now, [JGJMatt] is trying two-part arm approach where the first bit extends and locks into position, and then a second arm extending from there and moves around freely.

Commercial record players can do more than just play records. If you’ve got an old one that isn’t even good enough for a thrift store copy of a Starship record, you could turn it into a pottery wheel or a guitar tremolo.

This Week In Security: Intel Atoms Spill Secrets, ICMP Poisons DNS, And The Blacksmith

Intel has announced CVE-2021-0146, a vulnerability in certain processors based on the Atom architecture, and the Trusted Platform Module (TPM) is at the center of the problem. The goal of the system around the TPM is to maintain system integrity even in the case of physical access by an attacker, so the hard drive is encrypted using a key stored in a secure chip on the motherboard. The TPM chip holds this encryption key and provides it during the boot process. When combined with secure boot, this is a surprisingly effective way to prevent tampering or data access even in the case of physical access. It’s effective, at least, when nothing goes wrong.

Earlier this year, we covered a story where the encryption key could be sniffed directly from the motherboard, by tapping the traces connecting the TPM to the CPU. It was pointed out that TPM 2.0 can encrypt the disk encryption key on the traces, making this attack impossible.

The entire Trusted Compute Model is based on the premise that the CPU itself is trustworthy. This brings us back to Intel’s announcement that a debug mode could be enabled via physical access. In this debug mode, the CPU master key can be extracted, leading to complete compromise. The drive encryption key can be recovered, and unsigned firmware can be loaded to the Management Engine. This means data in the TPM enclave and the TPM-stored encryption key can be compromised. Updated firmware is rolling out through motherboard vendors to address the problem. Continue reading “This Week In Security: Intel Atoms Spill Secrets, ICMP Poisons DNS, And The Blacksmith”

showing the ramp and sprayer of the cider press

The Spiced (Cider) Must Flow

A fresh-squeezed glass of orange juice with breakfast seems like a trope that’s straight from a late 1980s sitcom. Making orange juice is easy; press until the liquid comes out. Apple juice (and, by extension, apple cider) is the same principle but requires much more force to squeeze out the juice. So what if you, like [Peter], have 900 lbs (408.2 kg for those metrically minded) of apples that you want to make cider out of? The obvious solution is to create a somewhat automated homemade cider press with lasers.

An earlier effort to make 25 gallons of cider took several full days of struggle for four people, so [Peter] knew he had to plan better next year. [Peter’s wife] milled and glued red oak into a large, sturdy frame that could press down with proper force and not break. [Peter] reached out to the local metal shop to fabricate a stainless steel tray with a custom drain. The cider basket itself and the pressboard were maple with waterproofing oil.

However, just because you can press apples, doesn’t mean you’re ready to make cider. They still need to be washed, cut, and ground into a pulp. A ramp was fashioned that it could be set in a truck bed with sprayers to wash the apples as they rolled by. A laser circuit with an LM393 opamp and a photoresistor allowed the sprayers to only activate when there was actually an apple to spray. Apple grinders are tricky as they need to survive the drop of several one-pound balls while staying at a reasonable speed. The grinder dispenses the pulp into a mesh nylon bag in a 5-gallon bucket, ready to be pressed. For the curious reader, 900lbs of apples yielded 60 gallons of delicious cider.

If you’re looking for a smaller scale press, here’s a cider press that’s a little simpler to make.

Eye-Tracking Device Is A Tiny Movie Theatre For Jumping Spiders

The eyes are windows into the mind, and this research into what jumping spiders look at and why required a clever device that performs eye tracking, but for jumping spiders. The eyesight of these fascinating creatures in some ways has a lot in common with humans. We both perceive a wide-angle region of lower visual fidelity, but are capable of directing our attention to areas of interest within that to see greater detail. Researchers have been able to perform eye-tracking on jumping spiders, literally showing exactly where they are looking in real-time, with the help of a custom device that works a little bit like a miniature movie theatre.

A harmless temporary adhesive on top (and a foam ball for a perch) holds a spider in front of a micro movie projector and IR camera. Spiders were not harmed in the research.

To do this, researchers had to get clever. The unblinking lenses of a spider’s two front-facing primary eyes do not move. Instead, to look at different things, the cone-shaped inside of the eye is shifted around by muscles. This effectively pulls the retina around to point towards different areas of interest. Spiders, whose primary eyes have boomerang-shaped retinas, have an X-shaped region of higher-resolution vision that the spider directs as needed.

So how does the spider eye tracker work? The spider perches on a tiny foam ball and is attached — the help of a harmless and temporary adhesive based on beeswax — to a small bristle. In this way, the spider is held stably in front of a video screen without otherwise being restrained. The spider is shown home movies while an IR camera picks up the reflection of IR off the retinas inside the spider’s two primary eyes. By superimposing the IR reflection onto the displayed video, it becomes possible to literally see exactly where the spider is looking at any given moment. This is similar in some ways to how eye tracking is done for humans, which also uses IR, but watches the position of the pupil.

In the short video embedded below, if you look closely you can see the two retinas make an X-shape of a faintly lighter color than the rest of the background. Watch the spider find and focus on the silhouette of a tasty cricket, but when a dark oval appears and grows larger (as it would look if it were getting closer) the spider’s gaze quickly snaps over to the potential threat.

Feel a need to know more about jumping spiders? This eye-tracking research was featured as part of a larger Science News article highlighting the deep sensory spectrum these fascinating creatures inhabit, most of which is completely inaccessible to humans.

Continue reading “Eye-Tracking Device Is A Tiny Movie Theatre For Jumping Spiders”

A 7805 Regulator puts out 6.3 Volts

Simple Electronic Hacks Inspire Doing More With Less

It’s late at night. The solder smoke keeps getting in your tired eyes, but your project is nearly done. The main circuit is powered by your 13.8 V bench supply, but part of the circuit needs 9 V. You dig into your stash to find your last LM7809 voltage regulator, but all you have is a bunch of LM7805’s. Are you done for the night? Not if you’ve watched [0033mer]’s Simple Electronic Circuit Hacks video! You know just what to do. The ground pin of a LM7805 connects to the cathode of a TL431 programmable Zener diode pulled from an old scrapped TV. The diode is referenced to a voltage divider, and voila! Your LM7805 is now putting out a steady 9 V.

How did [0033mer] become adept at doing more with less? As he explains in the video below, his primary source of parts in The Time Before The Internet was old TV’s that were beyond repair. Using N-Channel MOSFETs to switch AC, sensing temperature changes with signal diodes, and even replacing a 555 with a blinking LED are just a few of the hacks covered in the video below the break.

We especially appreciated the simple, to-the-point presentation that inspires us to keep on hacking in the truest sense: Doing more with less! If you enjoy a good diode hack like we do, you will likely appreciate learning Diode Basics by W2AEW, or a Diode Based Radiation Detector.

Thank you [DSM] for the tip! Be sure to submit your the cool things you come across to our Tips Line!

Continue reading “Simple Electronic Hacks Inspire Doing More With Less”

Joel showing off his webshooter

Spider-Man Swings A Little Closer To Reality

Despite reading Hackaday daily and seeing the incredible things that people do, something comes along that just sort of blows you away every once in a while. Sometimes it’s just technically impressive, but often it is just, “I didn’t think that anyone would try this or even think of this.” [Joel Creates] is one such example with his Spider-Man wrist-mounted web-shooters.

Previously, [Joel] had built a web-slinging system based around a pressurized tank of hot glue worn like a backpack. What it lacked in miniaturization, it made up for in functionality. However, [JT of Build IRL] created a grappling-based Spider-Man system that fired ropes which got [Joel] thinking that perhaps the hot glue and the grappling system could be combined for a smaller overall package.

His solution is quite simple. Old CO2 cartridges filled with glue and a small nozzle drilled in are loaded into a quick-connect fitting. The hot glue is heated via an induction coil on a small tool belt before loading. A thermally insulating layer of paint and micro-vacuum spheres on the canister helps [Joel] place it in the wrist shooter without burning himself. A bike tire inflator with a lever-activated system forms the main assembly of the shooter. Using compressed air, the system fires a glob of hot glue at a surface and a metal web-shaped disk with holes and a rope attached to the blob of hot glue. As the glue rapidly cools, the metal disk provides a lot of surfaces for the adhesive to hang onto. Overall, the results are pretty impressive, but the engineering challenges make for an exciting journey. Everything from failed prototypes to failed power supplies seems to happen on this build.

Combined with some electromagnets, you could really have the whole spider package.

Thanks [Carson B] for sending this one in! Video after the break.

Continue reading “Spider-Man Swings A Little Closer To Reality”