Pump Up The Resin

Sometimes the best ideas are simple and seem obvious after you’ve heard them. [Danny] showed us a great idea that fits that description. He uses a peristaltic pump to move resin in and out of his print bed. (Video, embedded below.) Normally, you remove the tank and pour the resin out into a container. With the pump, you can leave the tank where it is and simply pull the resin through a tube. The process is slower than pouring, but not as messy and doesn’t risk damage to your FEP film.

You can also use the pump like a vacuum to clean up resin. According to [Danny], the biggest value is when working with very large printers. He shows a Peopoly Phenom which has a huge tank compared to the other printers he shows in the video.

Continue reading “Pump Up The Resin”

Fertilizing Plants With A Custom 3D-Printed Pump

For all but the most experienced gardeners and botanists, taking care of the soil around one’s plants can seem like an unsolvable mystery. Not only does soil need the correct amount of nutrients for plants to thrive, but it also needs a certain amount of moisture, correct pH, proper temperature, and a whole host of other qualities. And, since you can’t manage what you can’t measure, [Jan] created a unique setup for maintaining his plants, complete with custom nutrient pumps.

While it might seem like standard plant care on the surface, [Jan]’s project uses a peristaltic pump for the nutrient solution that is completely 3D printed with the exception of the rollers and the screws that hold the assembly together. With that out of the way, it was possible to begin adding this nutrient solution to the plants. The entire setup from the pump itself to the monitoring of the plants’ soil through an array of sensors is handled by an ESP32 running with help from ESPHome.

For anyone struggling with growing plants indoors, this project could be a great first step to improving vegetable yields or even just helping along a decorative houseplant. The real gem is the 3D printed pump, though, which may have wider applications for anyone with a 3D printer and who also needs something like an automatic coffee refilling machine.

A Home Made Air Pump From PVC Pipe

If you need a supply of low pressure air – let’s say enough pressure to ensure a constant supply but not enough to describe as “Compressed air” with a straight face – what do you do? Many people will reach for an aquarium pump, after all that represents a readily available and relatively inexpensive source of bubbles.

But not [truebassB], instead he built his own air pump from first principles (YouTube, embedded below) using PVC pipe. It’s a straightforward design in which the cylinder is a length of pipe with a disc of flat PVC glued to its end, and the piston is fabricated from a short piece of the same tube with a section cut out to reduce its diameter. An adequate seal is achieved using a piece of rubber cut from an inner tube, and the gudgeon pin is cut from a piece of wire. The connecting rod is another longer piece of wire, and the crank is a wooden disc with an offset hole. Power comes from a DC motor taken from a dead power tool. A couple of ball check valves are used for air input and output.

The resulting pump isn’t the prettiest of pumps, and it could probably do with a bit of balancing as it rattles somewhat. But it’s a pump, and it obviously cost next-to-nothing, so that in our eyes makes it a neat build. He’s posted a video of the build which we’ve placed below the break.

Continue reading “A Home Made Air Pump From PVC Pipe”

DIY Syringe Pump Saves Big Bucks For Hacker’s Lab

If you had a choice between going to your boss and asking for funds for a new piece of gear, would you rather ask for $3000 to buy off-the-shelf, or $200 for the parts to build the same thing yourself? Any self-respecting hacker knows the answer, and when presented with an opportunity to equip his lab with a new DIY syringe pump for $200, [Dr. D-Flo] rose to the challenge.

The first stop for [Dr. D-Flo] was, naturally, Hackaday.io, which is where he found [Naroom]’s syringe pump project. It was a good match for his budget and his specs, but he needed to modify some of the 3D printed parts a little to fit the larger syringes he intended to use. The base is aluminum extrusion, the drive train is a stepper motor spinning threaded rod and a captive nut in the plunger holders, and an Arduino and motor shield control everything. The drive train will obviously suffer from a fair amount of backlash, but this pump isn’t meant for precise dispensing so it shouldn’t matter. We’d worry a little more about the robustness of the printed parts over time and their compatibility with common lab solvents, but overall this was a great build that [Dr. D-Flo] intends to use in a 3D food printer. We look forward to seeing that one.

It’s getting so that that you can build almost anything for the lab these days, from peristaltic pumps to centrifuges. It has to be hard to concentrate on your science when there’s so much gear to make.

Continue reading “DIY Syringe Pump Saves Big Bucks For Hacker’s Lab”

3D Printed Peristalic Pump Has Impressive Capabilities

[Frank Zhao’s] grandfather has esophageal cancer. Unfortunately for him, it means he’ll be eating through a tube for a while. This involves someone helping him with a big syringe to push a thick food liquid through the tube. [Frank] knew there had to be a better way. While [Frank] was in the hospital in China visiting, he started designing a 3D printed peristaltic pump. It’s what you would expect: a mechanism that massages a loop of plastic tubing to push the contents further down the path.

After he got back to the States he refined his design a bit more and started 3D printing. As it turns out — it works pretty damn well. In the following video he shows it pumping mayonaise — and since it’s peristalic, no priming of the pump required!

Continue reading “3D Printed Peristalic Pump Has Impressive Capabilities”

Programmable Pump Keeps Its Stick On The Ice

Need to water your plants? Pump some coolant on a mill? Fill a watermelon with booze? Never fear, because the third greatest Canadian behind [Alan Thicke] and [Bryan Adams] is here with the solution to all your problems! It’s a cordless pump for desktop CNC, repair, and horticulture that automates daily chores and pumps out exact amounts of liquid.

[Chris], [AvE], Bright Idea Workshop, or, ‘that guy that records videos in his shop’ is rather well-known around these parts; we’ve seen him make an $80,000 gold-plated cutting fluid pot, a copper laminate desk, and recharge his cell phone with a car and a pencil. He’s very, very good at futzing around in his shop and the dialog is the closest YouTube will ever get to Click and Clack the Tappet Brothers, albeit without wheezing laughter.

The Kickstarter is for a rechargeable cordless pump, controlled by a microcontroller, that dispenses liquids of varying viscosity onto the item of your choice. It’s perfect for adding cooling to a drill press, watering plants, or something or everything involving beer.

Details on the pump are a little sparse, but given the liquid never touches the pump we’re putting money on some type of peristaltic pump. Add volume measurement, programmable flow rate adjustment, a timer, and dispensing programmable volumes of liquid, and you’ve got something useful.

Thanks [Scott] for the tip.

Laser Cut Pumps

[vimeo 2607149]

As the video above shows, [Zach Hoeken] is continuing to improve on his peristaltic pump design. The moving parts in peristaltic pumps never contact the fluid being moved. Instead, they interact with the outside of the tubing that’s carrying the liquid. In [Zach]’s design, multiple skate bearings roll across the outside of the silicon tubing, squeezing the liquid through. You can get a better idea of how this works by watching the first video. The newer version appears to be pumping much better. We’re not sure if that’s because of faster motors or from switching to two bearings instead of three. This definitely looks like a good choice if you’re planning on building your own cocktail robot. You can find the plans on Thingiverse.