Repairing The Questionable £25,000 Tom Evans Audiophile Pre-Amp

One of the power supply boards in the Tom Evans Mastergroove SR MkIII preamplifier. (Credit: Mend it Mark, YouTube)
One of the power supply boards in the Tom Evans Mastergroove SR MkIII preamplifier. (Credit: Mend it Mark, YouTube)

It’s not much of a secret that in the world of ‘audiophile gear’ there is a lot of snake oil and deception, including many products that are at best of questionable value. The Tom Evans Mastergroove SR mkIII preamplifier is one example of this, as [Mark] from the Mend it Mark YouTube channel found in a recent video when he got one to repair which the manufacturer claimed ‘could not be fixed’. This marvel of audio engineering provides amplification for record players, for the low-low price of only twenty-five thousand quid, or about 29.000 US bucks. So what’s inside one of these expensive marvels?

Claiming to be a high-end unit, with only ten units produced per year, you’d expect a gold-plated PCB with excellent noise isolation. The unit does come with an absolutely massive external power supply that dwarfs the preamplifier itself, but the real surprise came after opening up the unit itself to take a peek at the damage, some of which was caused by transport.

As it turns out, the inside of the preamplifier consists out of four stacks of rather cheap, home-made looking boards with what looks like improvised RF shielding in the form of bare PCBs and filed-off markings on many parts. In between the rat’s nest of wiring running everywhere, [Mark] had to trace the broken channel’s wiring, creating a full repair manual in the process. Along the way one of the opamp boards was found to be defective, courtesy of a single shorted tantalum capacitor.

With the tantalum capacitor replaced, [Mark] had repaired the unit, but even though the preamplifier isn’t terribly designed, the illusion of its price tag has been shattered worse than the contents of a parcel kicked across the parking lot by the Royal Mail.

Thanks to [Jim] for the tip.

Continue reading “Repairing The Questionable £25,000 Tom Evans Audiophile Pre-Amp”

Bluetooth Dongle Gives Up Its Secrets With Quick Snooping Hack

There’s a lot going on in our wireless world, and the number of packets whizzing back and forth between our devices is staggering. All this information can be a rich vein to mine for IoT hackers, but how do you zero in on the information that matters? That depends, of course, but if your application involves Bluetooth, you might be able to snoop in on the conversation relatively easily.

By way of explanation, we turn to [Mark Hughes] and his Boondock Echo, a device we’ve featured in these pages before. [Mark] needed to know how long the Echo would operate when powered by a battery bank, as well as specifics about the power draw over time. He had one of those Fnirsi USB power meter dongles, the kind that talks to a smartphone app over Bluetooth. To tap into the conversation, he enabled Host Control Interface logging on his phone and let the dongle and the app talk for a bit. The captured log file was then filtered through WireShark, leaving behind a list of all the Bluetooth packets to and from the dongle’s address.

That’s when the fun began. Using a little wetware pattern recognition, [Mark] was able to figure out the basic structure of each frame. Knowing the voltage range of USB power delivery helped him find the bytes representing voltage and current, which allowed him to throw together a Python program to talk to the dongle in real-time and get the critical numbers.

It’s not likely that all BLE-connected devices will be as amenable to reverse engineering as this dongle was, but this is still a great technique to keep in mind. We’ve got a couple of applications for this in mind already, in fact.

Continue reading “Bluetooth Dongle Gives Up Its Secrets With Quick Snooping Hack”

The Diablo Canyon NPP in California. This thermal plant uses once-through cooling. (Credit: Doc Searls)

US DOE Sets New Nuclear Energy Targets

To tackle the growing electrification of devices, we’ll need to deploy more generation to the grid. The US Department of Energy (DOE) has unveiled a new target to triple nuclear generating capacity by 2050.

Using a combination of existing Generation III+ reactor designs, upcoming small modular and micro reactors, and “legislation like the ADVANCE Act that streamlines regulatory processes,” DOE plans to add 35 gigawatt (GW) of generating capacity by 2035 and an additional 15 GW installed per year by 2040 to hit a total capacity of 200 GW of clean, green atom power by 2050.

According to the DOE, 100 GW of nuclear power was deployed in the 1970s and 1980s, so this isn’t an entirely unprecedented scale up of nuclear, although it won’t happen overnight. One of the advantages of renewables over nuclear is the lower cost and better public perception — but a combination of technologies will create a more robust grid than an “all of your eggs in one basket” approach. Vehicle to grid storage, geothermal, solar, wind, and yes, nuclear will all have their place at the clean energy table.

If you want to know more about siting nuclear on old coal plants, we covered DOE’s report on the matter as well as some efforts to build a fusion reactor on a decommissioned coal site as well.

Microfluidic Motors Could Work Really Well For Tiny Scale Tasks

The vast majority of motors that we care about all stick to a theme. They rely on the electromagnetic dance between electrons and magnets to create motion. They come in all shapes and sizes and types, but fundamentally, they all rely on electromagnetic principles at heart.

And yet! This is not the only way to create a motor. Electrostatic motors exist, for example, only they’re not very good because electrostatic forces are so weak by comparison. Only, a game-changing motor technology might have found a way to leverage them for more performance. It achieves this by working with fluid physics on a very small scale.

Continue reading “Microfluidic Motors Could Work Really Well For Tiny Scale Tasks”

Retrotechtacular: The TV Bombs Of WWII

Anyone who was around for the various wars and conflicts of the early 2000s probably recalls the video clips showing guided bombs finding their targets. The black-and-white clips came from TV cameras mounted in the nose of the bomb, and were used by bombardiers to visually guide the warhead to the target — often providing for a level of precision amounting to a choice of “this window or that window?” It was scary stuff, especially when you thought about what was on the other side of the window.

Surprisingly, television-guide munitions aren’t exactly new, as this video on TV-guided glide bombs in WWII indicates. According to [WWII US Bombers], research on TV guidance by the US Army Air Force started in 1943, and consisted of a plywood airframe built around a standard 2000-pound class gravity bomb. The airframe had stubby wings for lift and steerable rudders and elevators for pitch and yaw control. Underneath the warhead was a boxy fairing containing a television camera based on an iconoscope or image orthicon, while all the radio gear rode behind the warhead in the empennage. A B-17 bomber could carry two GB-4s on external hardpoints, with a bulky TV receiver provided for the bombardier to watch the bomb’s terminal glide and make fine adjustments with a joystick.

In testing, the GB-4 performed remarkably well. In an era when a good bombardier was expected to drop a bomb in a circle with a radius of about 1,200′ (365 meters) from the aim point, GB-4 operators were hitting within 200′ (60 meters). With results like that, the USAAF had high hopes for the GB-4, and ordered it into production. Sadly, though, the testing results were not replicated in combat. The USAAF’s 388th Bomber Group dropped a total of six GB-4s against four targets in the European Theater in 1944 with terrible results. The main problem reported was not being able to see the target due to reception problems, leaving the bombardiers to fly blind. In other cases, the bomb’s camera returned a picture but the contrast in the picture was so poor that steering the weapon to the target was impossible. On one unfortunate attack on a steel factory in Duren, Germany, the only building with enough contrast to serve as an aiming point was a church six miles from the target.

The GB-4’s battlefield service was short and inglorious, with most of the 1,200 packages delivered never being used. TV-guided bombs would have to wait for another war, and ironically it would be the postwar boom in consumer electronics and the explosion of TV into popular culture would move the technology along enough to make it possible.

Continue reading “Retrotechtacular: The TV Bombs Of WWII”

The Life Cycle Of Nuclear Fission Fuel: From Stars To Burn-Up

Outdone only by nuclear fusion, the process of nuclear fission releases enormous amounts of energy. The ‘spicy rocks’ that are at the core of both natural and artificial fission reactors are generally composed of uranium-235 (U-235) along with other isotopes that may or may not play a role in the fission process. A very long time ago when the Earth was still very young, the ratio of fissile U-235 to fertile U-238 was sufficiently high that nuclear fission would spontaneously commence, as happened at what is now the Oklo region of Gabon.

Although natural decay of U-235 means that this is unlikely to happen again, we humans have learned to take uranium ore and start a controlled fission process in reactors, beginning in the 1940s. This can be done using natural uranium ore, or with enriched (i.e. higher U-235 levels) uranium. In a standard light-water reactor (LWR) a few percent of U-235 is used up this way, after which fission products, mostly minor actinides, begin to inhibit the fission process, and fresh fuel is inserted.

This spent fuel can then have these contaminants removed to create fresh fuel through reprocessing, but this is only one of the ways we have to extract most of the energy from uranium, thorium, and other actinides like plutonium. Although actinides like uranium and thorium are among the most abundant elements in the Earth’s crust and oceans, there are good reasons to not simply dig up fresh ore to refuel reactors with.

Continue reading “The Life Cycle Of Nuclear Fission Fuel: From Stars To Burn-Up”

Smart Thermostats Pitched For Texas Homes To Relieve Stressed Grid

It’s not much of a secret that Texas’ nearly completely isolated grid is in a bit of a pickle, with generating capacity often being handily outstripped during periods of extreme demand. In a latest bid to fight this problem, smart thermostats are being offered to customers, who will then participate in peak-shaving. The partnership between NRG Energy Inc., Renew Home LLC, and Alphabet Inc. will see about 650,000 of these thermostats distributed to customers.

For customers the incentive would be mostly financial, though the details on the potential cost savings seem scarce. The thermostats would be either a Vivint (an NRG company) or Google Nest branded one, which would be controlled via Google Cloud, allowing for thermostat settings to be changed to reduce the load on the grid. This is expected to save ‘300 MW’ in the first two years, though it’s not clear whether this means ‘continuously’, or intermittent like with a peaker natural gas plant.

Demand curtailment is not a new thing, with it being a big thing among commercial customers in South Korea, as we discussed within the topic of vehicle-to-grid energy storage. Depending on how it is implemented it can make a big difference, but it’ll remain to see how regular consumers take to the idea. It also provides more evidence for reducing grid load being a lot easier than adding grid-level storage, which is becoming an increasingly dire topic as more non-dispatchable solar and wind power is added to the grid.