Hackaday editors Mike Szczys and Elliot Williams discuss the many great hacks of the past week. Just in case you missed the fact that we’re living in the cyberpunk future, you can now pop off your prosthetic hand and jack directly into a synthesizer. The robot headed for Mars has a flying drone in its belly. Now they’re putting foaming agent in filament to make it light and flexible. And did you ever wonder why those pinouts were so jumbled?
Take a look at the links below if you want to follow along, and as always tell us what you think about this episode in the comments!
Take a look at the links below if you want to follow along, and as always, tell us what you think about this episode in the comments!
We’re not sure exactly why [Justin Garrison] decided to make these awesome name badges for himself and his coworkers at Disney+ streaming, but it’s fun to imagine them all lighting up a team-building ride down Space Mountain, isn’t it? Whatever the reason, they sure do look good.
Each badge has an ATtiny85 that drives the ten individually-addressable RGB LEDs, and both the wire and the LEDs are powered by the EL power inverter. [Justin] bought the thinnest EL wire he could find, which is conveniently also the brightest and probably the easiest to manipulate.
Nevertheless, we can’t get over how good the names look, and wonder if [Justin] missed his calling as a neon artist. He cleverly stuck wires through the protoboard to help form the letters, and then used superglue to hold them in place. [Justin] has the code up on GitHub and an album full of build pictures if you want to give this a go.
DNSSEC is the system that allows for cryptographically secure DNS. It’s all based on a root cryptographic key, maintained by the Internet Assigned Numbers Authority (IANA). Ever wondered where the root Key Signing Key is stored, and how it’s accessed? Four times a year, a ceremony is held where the root key is pulled out of a physical safe, and maintenance tasks are performed in front of a group of witnesses.
Such an event was scheduled for February 12th, but a teensy problem was discovered. One of the safes that holds the key media had a broken lock, and the root key signing key was inaccessible for a few days while repairs were effected. The open nature of IANA means that much of their operations are publicly reported, and you can even watch the key signing ceremony, which was finally held on February 16th.
This may surprise younger readers, but there was once a time when the reality programming on The Weather Channel was simply, you know, weather. It used to be no more than a ten-minute wait to “Local on the Eights”, with simple text crawls of local conditions and forecasts that looked like they were taken straight from the National Weather Service feed. Those were the days, and sadly they seem to be gone forever.
Or perhaps not, if this retro weather channel feed has anything to say about it. It’s the product of [probnot] and consists of a simple Python program that runs on a Raspberry Pi. Being from Winnipeg, [probnot] is tapping into Environment Canada for local weather data, but it should be easy enough to modify to use your local weather provider’s API. The screen is full of retro goodness, from the simple color scheme to the blocky white text; the digital clock and local news crawl at the bottom complete the old school experience. It doesn’t appear that the code supports the period-correct smooth jazz saxophone, but that too should be a simple modification.
All jibing aside, this would be a welcome addition to the morning routine. And for the full retro ride, why not consider putting it in an old TV case?
Taking timelapses is a fun pastime of many a photographer. While most modern cameras have some features to pull this off, if you want to get really into it, you’ll want an intervalometer to run the show. Chasing just that, [Zach] decided that rather than buying off-the-shelf, a DIY build was in order.
The build relies on an Arduino Nano to run the show, in combination with the popular HC-05 Bluetooth module. The Bluetooth module allows the device to communicate with a smartphone app which [Zach] created using RoboRemo. This is a platform that makes creating custom USB, WiFI and Bluetooth apps easy for beginners. The app sends instructions to the intervalometer regarding the number of photos to take, and the time to wait between each shot. Then, it triggers the time lapse, and the Arduino triggers the camera by shorting the relevant pins on a TRS plug inserted into the camera.
It’s a straightforward build that most hackers could probably complete with parts from the junk box. Plus, building your own offers the possibility of customising it exactly to your needs. Of course, you can eschew modernity and do things mechanically instead. Video after the break.
Irrigation controllers have been around for a long time, often using similar hardware inside that would be familiar to the average maker. However, many of the products on the shelf at your local hardware store can be quite expensive for what amounts to a microcontroller, display, and relay board. [oscillatory] had such a rig, but wanted to bring it into the 21st century, IOT style.
The existing Holman irrigation system consisted of a control box, hooked up to four solenoid valves controlled by relays. [oscillatory] decided that replacing this with something fancier would thus be straightforward. A relay board packing an ESP8266 was sourced, and flashed with the Tasmota firmware. This was then hooked up to run off the Holman’s 24 VAC supply via a CCTV power supply, allowing the new controller to be run in parallel with the existing hardware, just in case. Scheduling is then controlled by Google Calendar, in concert with Home Assistant.
[oscillatory] now has a watering system that can be controlled over the web, and without the need to install any custom apps. Simply creating a calendar entry is enough for the system to spring into action. We’ve seen others use a similar approach, too. It’s a great example of using off-the-shelf parts to whip up a useful custom home automation setup!
In this day and age, with cheap online shopping, software defined radio and bargain-basement Baofengs from China, the upstart radio ham is spoilt for choice. Of course, there’s nothing quite like the charm of keying up your own homebrewed rig, cooked up in the garage from scratch. [Paul], aka [VK3HN], knows just how it feels, and put together an epic 200 watt Class D AM rig to blast his signal on the airwaves.
An example of an Arduino used in one of [Paul]’s builds.It’s a build following on from the work of another radio ham, [Laurie], aka [VK3SJ]. Younger hackers will note the Arduino Nano at the heart of the project, running the VFO and handling all the relevant transmit/receive switching. We can only imagine how welcome modern microcontrollers must have been to old hands at amateur radio, making synthesizing all manner of wild frequencies a cinch.
The amount of effort that has gone into the build is huge. There are handwound coils for the PWM low-pass filter, and the PCB is home-etched in ferric chloride, doing things the old-school way. There’s also a healthy pile of dead components that sacrificed their lives in the development of this build. Perhaps our favorite part is the general aesthetic – we can’t get over the combination of hand-drawn copper traces and off-the-shelf Arduinos.
Many components perished in the development of this powerful rig.
It’s a build that far exceeds the Australian legal limits, so it only gets keyed up to 120W in real use. This has the benefit of keeping the radio operating far in the safety zone for its components, helping keep things cool and stable. We’re sure [Paul] will be getting some great contacts on this rig. If you’re suffering from low power yourself, consider an amplifer build. Video after the break.