AI Not Needed For Hackaday Projects

It was Supercon this weekend, and Hackaday staffers made their way to Pasadena for what was by all accounts an excellent event. Now they’re all on their way home on red-eye flights and far from their benches, so spare a thought for the lonely editor holding the fort while they’ve been having fun. The supply of cool hacks for your entertainment must continue, so what’s to be done? Fortunately Hackaday writer [Anne Ogborn] has the answer, in the form of an automated Hackaday article generator.

We once had a commenter make a withering insult that one of our contributors’ writing styles looked like the work of an AI driven bot, a sentence that the writer in question treasures enough to have incorporated in their Hackaday email signature. [Anne] is a data scientist and Prolog programmer by trade so knows a bit about AI, and she has no need for such frippery. Instead she’s made a deck of cards each marked with a common theme among the work featured here, and generating new article titles is a simple case of drawing cards from the pack and assembling the resulting sentence.

The result is both amusing and we think, uncannily on the mark. Who wouldn’t want an ESP8266 powered cardboard drone? We think it will make a valuable addition to the Hackaday armoury, to be brought out on days such as the first of April, when there’s always an unexpected shortage of hacks. Video below the break.

Continue reading “AI Not Needed For Hackaday Projects”

Flaming Power Wheels Skeleton Wins Halloween

When the project description starts with the sentence “I use an RC remote and receiver, an esp32, high-current motor drivers, servos, an FPV camera, and a little propane”, you know that this is one which deserves a second look. And so [gearscodeandfire]’s Halloween project caught our eye. It’s a pink Power Wheels jeep driven by a skeletal rider, and the best part is that the whole thing is remote controlled down to a pan-and-tilt skull, a first-person video feed, and even real flames.

At its heart is an ESP32 with a set of motor controllers and relays to do the heavy lifting. The controller is a standard radio remote controller, and the first-person view is an analogue feed as you’d find on a drone. The skeleton is given a child-like appearance by discarding the original adult-proportioned plastic skull and replacing it with a much larger item. The thought that plastic Halloween skulls are available in a range of standard sizes and can be considered as a part in their own right is something we find amusing. The propane burner is supplied from a small cylinder via a solenoid valve, and ignited with the spark from a high-voltage transformer.

The result, we think, wins Halloween hands down. Twelve-foot skeletons are SO 2023!

The video is below the break.

Continue reading “Flaming Power Wheels Skeleton Wins Halloween”

An image of a dark mode Linux desktop environment. A white iTunes window stands out in a virtualized Windows 10 environment. Two iPod games, "Phase" and "Texas Hold 'Em" are visible in the "iPod Games" section of the library.

IPod Clickwheel Games Preservation Project

The iPod once reigned supreme in the realm of portable music. Hackers are now working on preserving one of its less lauded functions — gaming. [via Ars Technica]

The run of 54 titles from 2006-2009 may not have made the iPod a handheld gaming success, but many still have fond memories of playing games on the devices. Unfortunately, Apple’s Fairplay DRM has made it nearly impossible to get those games back unless you happened to backup your library since those games can’t be downloaded again and are tied to both the account and iTunes installation that originally purchased the game.

Continue reading “IPod Clickwheel Games Preservation Project”

Humble Television Tubes Make An FM Regenerative Radio

The regenerative radio is long-ago superseded in commercial receivers, but it remains a common project for electronics or radio enthusiasts seeking to make a simple receiver. It’s most often seen for AM band receivers or perhaps shortwave ham band ones, but it’s a circuit which also works at much higher frequencies. [Perian Marcel] has done just this, with a regenerative receiver for the FM broadcast band.

The principle of a regenerative receiver is that it takes a tuned radio frequency receiver with a wide bandwidth and poor performance, and applies feedback to the point at which the circuit is almost but not quite oscillating. This has the effect of hugely increasing the “Q”, or quality factor of the receiver, giving it much more sensitivity and a narrow bandwidth. They’re tricky to tune but they can give reasonable performance, and they will happily slope-demodulate an FM transmission.

This one uses two tubes from consumer grade TV receivers, the “P” at the start of the part number being the giveaway for a 300mA series heater chain. The RF triode-pentode isn’t a radio part at all, instead it’s a mundane TV field oscillator part pushed into service at higher frequencies, while the other triode-pentode serves as an audio amplifier. The original circuit from which this one is adapted is available online, All in all it’s a neat project, and a reminder that exotic parts aren’t always necessary at higher frequencies. The video is below the break.

Continue reading “Humble Television Tubes Make An FM Regenerative Radio”

A Lesson In RF Design Thanks To This Homebrew LNA

If you’re planning on working satellites or doing any sort of RF work where the signal lives down in the dirt, you’re going to need a low-noise amplifier. That’s typically not a problem, as the market is littered with dozens of cheap options that can be delivered in a day or two — you just pay your money and get to work. But is there a case to be made for rolling your own LNA?

[Salil, aka Nuclearrambo] thinks so, and he did a nice job showing us how it’s done. The first step, as always, is to define your specs, which for [Salil] were pretty modest: a low noise figure, moderate gain, and good linearity. He also wanted a bandpass filter for the 2-meter amateur radio band and for weather satellite downlinks, and a bias-tee to power the LNA over the coax feedline. The blog post has a detailed discussion of the electrical design, plus some good tips on PCB design for RF applications. We also found the discussion on bias-tee design helpful, especially for anyone who has ever struggled with the idea that RF and DC can get along together on a single piece of coax. Part 2 concentrates on testing the LNA, mostly using hobbyist-grade test gear like the NanoVNA and tiny SA spectrum analyzer. [Salil]’s tests showed the LNA lived up to the design specs and more, making it more than ready to put to work with an RTL-SDR.

Was this more work than buying an LNA? Absolutely, and probably with the same results. But then again, what’s to learn by just getting a pre-built module in the mail?

A side view of an Asian woman with brown hair. She has a faint smile and is wearing an earring that looks somewhat like a large copper snowflake. Near the ear hole is a small PCB with a blinking LED. To the right of the image is the text "LED Earring, Recieved power 50 µW"

Power-Over-Skin Makes Powering Wearables Easier

The ever-shrinking size of electronics and sensors has allowed wearables to help us quantify more and more about ourselves in smaller and smaller packages, but one major constraint is the size of the battery you can fit inside. What if you could remotely power a wearable device instead?

Researchers at Carnegie Mellon University were able to develop a power transmitter that lets power flow over human skin to remote devices over distances as far a head-to-toe. The human body can efficiently transmit 40 MHz RF energy along the skin and keeps this energy confined around the body and through clothing, as the effect is capacitive.

The researchers were able to develop several proof-of-concept devices including “a Bluetooth
ring with a joystick, a stick-and-forget medical patch which logs data, and a sun-exposure patch with a screen — demonstrating user input, displays, sensing, and wireless communication.” As the researchers state in the paper, this could open up some really interesting new wearable applications that weren’t possible previously because of power constraints.

If you’re ready to dive into the world of wearables, how about this hackable smart ring or a wearable that rides rails?

Continue reading “Power-Over-Skin Makes Powering Wearables Easier”

Supercon 2024: Badge Add-On Winners

This year we challenged the Hackaday community to develop Shitty Simple Supercon Add-Ons (SAO) that did more than just blink a few LEDs. The SAO standard includes I2C data and a pair of GPIO pins, but historically, they’ve very rarely been used. We knew the talented folks in this community would be able to raise the bar, but as they have a tendency to do, they’ve exceeded all of our expectations.

As we announced live during the closing ceremony at the 2024 Hackaday Supercon, the following four SAOs will be put into production and distributed to all the attendees at Hackaday Europe in Spring of 2025.

Continue reading “Supercon 2024: Badge Add-On Winners”