Overhead photo of a Tandon TM100-1 Floppy Drive and a 5,25" Floppy

How To Revive A Tandon Floppy Drive

In this episode of [Adrian’s Digital Basement], we dive into the world of retro computing with a focus on diagnosing and repairing an old full-height 5.25-inch floppy drive from an IBM 5150 system. Although mechanically sound, the drive had trouble reading disks, and Adrian quickly set out to fix the issue. Using a Greaseweazle—a versatile open-source tool for floppy disk diagnostics—he tests the drive’s components and explores whether the fault lies with the read/write head or electronic systems.

The repair process provides fascinating insights into the Tandon TM100-1 floppy drive, a key player in vintage computing. Adrian explains how the drive was designed as a single-sided unit, yet hints at potential double-sided capability due to its circuit board, raising possibilities for future tweaks. Throughout the video, Adrian shares handy tips on ensuring proper mechanical maintenance, such as keeping lubrication in check and ensuring correct spring tension. His attention to detail, especially on termination resistors, provided vital knowledge for anyone looking to understand or restore these old drives.

For fans of retro tech, this episode is a must-watch! Adrian makes complex repairs accessible, sharing both technical know-how and nostalgic appreciation. For those interested in similar hacks, past projects like the Greaseweazle tool itself or other Amiga system repairs are worth exploring. To see Adrian in action and catch all the repair details, check out the full video.

Continue reading “How To Revive A Tandon Floppy Drive”

Single Rotor Drone Spins For 360 Lidar Scanning

Multiple motors or servos are the norm for drones to achieve controllable flight, but a team from MARS LAB HKU was able to a 360° lidar scanning drone with full control on just a single motor and no additional actuators. Video after the break.

The key to controllable flight is the swashplateless propeller design that we’ve seen a few times, but it always required a second propeller to counteract self-rotation. In this case, the team was able to make that self-rotation work so that they could achieve 360° scanning with a single fixed LIDAR sensor. Self-rotation still needs to be slowed, so this was done with four stationary vanes. The single rotor also means better efficiency compared to a multi-rotor with similar propeller disk area.

The LIDAR comprises a full 50% of the drone’s weight and provides a conical FOV out to a range of 450m. All processing happens onboard the drone, with point cloud data being processed by a LIDAR-inertial odometry framework. This allows the drone to track and plan its flight path while also building a 3D map of an unknown environment. This means it would be extremely useful for indoor or underground environments where GPS or other positioning systems are not available.

All the design files and code for the drone are up on GitHub, and most of the electronic components are off-the-shelf. This means you can build your own, and the expensive lidar sensor is not required to get it flying. This seems like a great platform for further experimentation, and getting usable video from a normal camera would be an interesting challenge. Continue reading “Single Rotor Drone Spins For 360 Lidar Scanning”

Interactive Project Teaches Lessons About Electromagnets And Waves

Whether you’re a kid or a nerdy adult, you’ll probably agree that the interactive exhibitions at the museum are the best. If you happened to get down to the Oregon Science Festival in the last couple of years, you might have enjoyed “Catch The Wave!”—a public education project to teach people about electromagnets and waves. Even better, [Justin Miller] has written up how he built this exciting project.

Catch The Wave! consists of four small tabletop cabinets. Each has physical controls and a screen, and each plays its role in teaching a lesson about electromagnets and sound waves, with a context of audio recording and playback.

The first station allows the user to power up an electromagnet and interact with it using paper clips. They can also see the effect it has on a nearby compass. The second illustrates how reversing current through an electromagnet can reverse its polarity, and demonstrates this by using it to swing a pendulum. The third station then ties this to the action of a speaker, which is effectively a fancy electromagnet—and demonstrates how it creates sound waves in this way. Finally, the fourth station demonstrates the use of a microphone to record a voice, and throws in some wacky effects for good fun.

If you’ve ever tried to explain how sound is recorded and reproduced, you’d probably have loved to had tools like these to do so. We love a good educational project around these parts, too.

HackFest Enschede: The Type Of Indoor Event We Wanted All Along

I’m sitting at a table writing this in the centre of a long and cavernous industrial building, the former print works of a local newspaper, I’m surrounded by hardware and software hackers working at their laptops, around me is a bustling crowd admiring a series of large projects on tables along the walls, and the ambient sound is one of the demoscene, chiptunes, 3D-printed guitars, and improbably hurdy-gurdy music. Laser light is playing on the walls, and even though it’s quite a journey from England to get here, I’m home. This is Hackfest Enschede, a two-day event in the Eastern Dutch city which by my estimation has managed the near-impossible feat of combining the flavour of both a hacker event and a maker faire all in one, causing the two distinct crowds to come together.

The Best Of Both Worlds, In One Place

To give an idea of what’s here it’s time for a virtual trip round the hall. I’ll start with the music, aside from the demosceners there’s Printstruments with a range of 3D-printedmusical instruments, and Nerdy Gurdy, as you may have guessed, that hacker hurdy-gurdy I mentioned. This is perhaps one of few places I could have seen a spontaneous jam session featuring a 3D-printed bass and a laser-cut hurdy-gurdy. Alongside them were the Eurorack synthesisers of Sound Force, providing analogue electronic sounds aplenty. Continue reading “HackFest Enschede: The Type Of Indoor Event We Wanted All Along”

Hackaday Podcast Episode 291: Walking In Space, Lead In The Earth, And Atoms Under The DIY Microscope

What have you missed on Hackaday this week? Elliot Williams and Al Williams compare notes on their favorites from the week, and you are invited. The guys may have said too much about the Supercon badge this year — listen in for a few hints about what it will be about.

For hacks, you’ll hear about scanning tunneling microscopes, power management for small Linux systems, and lots of inertial measurement units. The guys talked about a few impossible hacks for consumer electronics, from hacking a laptop, to custom cell phones.

Of course, there are plenty more long-form articles of the week, including a brief history of what can go wrong on a spacewalk and how to get the lead out (of the ground). Don’t forget to take a stab at the What’s That Sound competition and maybe score a sweet Hackaday Podcast T-shirt.

Check out the links below if you want to follow along, and as always, tell us what you think about this episode in the comments!

Use this link to teleport a DRM-free MP3 to your location.

Continue reading “Hackaday Podcast Episode 291: Walking In Space, Lead In The Earth, And Atoms Under The DIY Microscope”

V-Cut Vias Test Your Whole Panel At Once

We might consider PCB panels as simply an intermediate step towards getting your PCBs manufactured on the scale of hundreds. This is due to, typically, an inability to run traces beyond your board – and most panel generators don’t give you the option, either. However, if you go for hand-crafted panels or modify a KiKit-created panel, you can easily add extra elements – for instance, why not add vias in the V-Cut path to preserve electrical connectivity between your boards?

[Adam Gulyas] went out and tried just that, and it’s a wonderfully viable method. He shows us how to calculate the via size to be just right given V-Cut and drilling tolerances, and then demonstrates design of an example board with discrete component LED blinkers you can power off a coin cell. The panel gets sent off to be manufactured and assembled, but don’t break the boards apart just yet — connect power to the two through-hole testpoints on the frame, and watch your panel light up all at once.

It’s a flashy demonstration – even more so once you put light-diffusing spheres on top of the domes. You could always do such a trick with mousebites, but you risk having the tracks tear off the board, and, V-Cuts are no doubt the cleanest way to panelize – no edge cleaning is required after breaking the boards apart. Want to learn about panel design? We’ve written and featured multiple guides for you over the years.

This Week In Security: Zimbra, DNS Poisoning, And Perfctl

Up first this week is a warning for the few of us still brave enough to host our own email servers. If you’re running Zimbra, it’s time to update, because CVE-2024-45519 is now being exploited in the wild.

That vulnerability is a pretty nasty one, though thankfully requires a specific change from default settings to be exposed. The problem is in postjournal. This logging option is off by default, but when it’s turned on, it logs incoming emails. One of the fields on an incoming SMTP mail object is the RCPT TO: field, with the recipients made of the to, cc, and bcc fields. When postjournal logs this field, it does so by passing it as a bash argument. That execution wasn’t properly sanitized, and wasn’t using a safe call like execvp(). So, it was possible to inject commands using the $() construction.

The details of the attack are known, and researchers are seeing early exploratory attempts to exploit this vulnerability. At least one of these campaigns is attempting to install webshells, so at least some of those attempts have teeth. The attack seems to be less reliable when coming from outside of the trusted network, which is nice, but not something to rely on.

New Tool Corner

What is that binary doing on your system? Even if you don’t do any security research, that’s a question you may ask yourself from time to time. A potential answer is WhoYouCalling. The wrinkle here is that WYC uses the Windows Event Tracing mechanism to collect the network traffic strictly from the application in question. So it’s a Windows only application for now. What you get is a packet capture from a specific executable and all of its children processes, with automated DNS capture to go along. Continue reading “This Week In Security: Zimbra, DNS Poisoning, And Perfctl”