RISC-V Pushes 400 Million Forth Words Per Second

We’ll be honest. Measuring Forth words per second doesn’t seem like a great benchmark since a Forth word could be very simple or quite complex. But we think the real meaning is “up to 400 million words per second.” There was a time when that level of performance would take a huge computer. These days, a simple board that costs a few bucks can do the trick, according to [Peter Forth] in an online presentation.

The key is the use of the Milk V Duo and some similar boards. Some of these look similar to a Raspberry Pi Pico. However, this chip on board has two RISC V cores, an ARM core, and an 8051. There’s also an accelerator coprocessor for vector operations like AI or video applications.

Continue reading “RISC-V Pushes 400 Million Forth Words Per Second”

Bypassing Airpods Hearing Aid Georestriction With A Faraday Cage

When Apple recently announced the hearing aid feature on their new AirPods Pro 2, it got the attention of quite a few people. Among these were [Rithwik Jayasimha] and friends, with [Rithwik] getting a pair together with his dad for use by his hard-of-hearing grandmother. That’s when he found out that this feature is effectively limited to the US and a small number of other countries due them being ‘regulated health features’, per Apple. With India not being on the approved countries list and with no interest in official approval legalities, [Rithwik] set to work to devise a way to bypass this restriction.

As noted in the blog post, the primary reason for using AirPods here instead of official hearing aids is due to the cost of the latter, which makes them a steal for anyone who is dealing with mild to moderate hearing loss. Following the official Hearing Aid feature setup instructions requires that your location is detected as being in an approved country. If it is, the Health App (on iOS 18.1) will popup a ‘Get Started’ screen. The challenge was thus to make the iOS device believe that it was actually in the FDA-blessed US and not India.

Merely spoofing the location and locale didn’t work, so the next step was to put the iOS device into a Faraday cage along with an ESP32 that broadcast California-based WiFi SSIDs. Once the thus treated iPad rebooted into the US, it could be used to enable the hearing aid feature. Next [Rithwik] and friends created a more streamlined setup and procedure to make it possible for others to replicate this feat.

As also noted in the blog post, the Hearing Aid feature is essentially a specially tuned Transparency mode preset, which is why using AirPods for this feature has been a thing for a while, but with this preset it’s much better tuned for cases of hearing loss.

I Want To Believe: How To Make Technology Value Judgements

In the iconic 1990s TV series The X Files, David Duchovny’s FBI agent-paranormal investigator Fox Mulder has a poster on his office wall. It shows a flying saucer in flight, with the slogan “I Want To Believe”. It perfectly sums up the dilemma the character faces. And while I’m guessing that only a few Hackaday readers have gone down the full lizard-people rabbit hole, wanting to believe is probably something that a lot of us who love sci-fi understand. It would be a fascinating event for science if a real extraterrestrial craft would show up, so of course we want to believe to some extent, even if we’re not seriously expecting it to appear in a Midwestern cornfield and break out the probes any time soon.

By All Means Believe. But Don’t Wreck Your Career

The first page of a scientific paper: "Electrochemically induced nuclear fusion of deuterium".
The infamous Fleischmann and Pons paper from 1989 on cold fusion.

Outside the realm of TV drama and science fiction it’s a sentiment that also applies in more credible situations. Back at the end of the 1980s for example when so-called cold fusion became a global story it seemed as though we might be on the verge of the Holy Grail of clean energy breakthroughs. Sadly we never got our Mr. Fusion to power our DeLorean, and the scientific proof was revealed to be on very weak foundations. The careers of the two researchers involved were irreparably damaged, and the entire field became a byword for junk science. A more recently story in a similar vein is the EM drive, a theoretical reactionless force generator that was promising enough at one point that even NASA performed some research on it. Sadly there were no magic engines forthcoming, so while it was worth reporting on the initial excitement, we’re guessing the story won’t come back.

When evaluating a scientific or technical breakthrough that seems as miraculous as it is unexpected then, of course we all want to believe. We evaluate based on the information we have in front of us though, and we all have a credibility pyramid. There’s nothing wrong with having an interest in fields that are more hope than delivery, indeed almost every technology that powers our world will at some time have to overcome skepticism in its gestation period. Perhaps it’s best to say that it’s okay to have hope, but hope shouldn’t override our scrutiny of the proof. Of course I want a perpetual motion machine, who wouldn’t, but as a fictional engineer once allegedly said, “Ye cannae change the laws of physics”. Continue reading “I Want To Believe: How To Make Technology Value Judgements”

Hackaday Podcast Episode 296: Supercon Wrapup With Tom And Al, The 3DP Brick Layering Controversy, And How To Weld In Space

In this episode you’ll get to hear not one, not two, but three Hackaday Editors! Now that the dust has mostly settled from the 2024 Hackaday Supercon, Al Williams joins Elliot and Tom to compare notes and pick out a few highlights from the event. But before that, the week’s discussion will cover the questionable patents holding back a promising feature for desktop 3D printers, a new digital book from NODE, and the surprisingly limited history of welding in space. You’ll also hear about the challenge of commercializing free and open source software, the finicky optics of the James Web Space Telescope, and the once exciting prospect of distributing software via pages of printed barcodes.

Direct MP3 download for offline, “easy” listening.

Continue reading “Hackaday Podcast Episode 296: Supercon Wrapup With Tom And Al, The 3DP Brick Layering Controversy, And How To Weld In Space”

This Week In Security: Hardware Attacks, IoT Security, And More

This week starts off with examinations of a couple hardware attacks that you might have considered impractical. Take a Ball Grid Array (BGA) NAND removal attack, for instance. The idea is that a NAND chip might contain useful information in the form of firmware or hard-coded secrets.

The question is whether a BGA desolder job puts this sort of approach out of the reach of most attackers. Now, this is Hackaday. We regularly cover how our readers do BGA solder jobs, so it should come as no surprise to us that less than two-hundred Euro worth of tools, and a little know-how and bravery, was all it took to extract this chip. Plop it onto a pogo-pin equipped reader, use some sketchy Windows software, and boom you’ve got firmware.

What exactly to do with that firmware access is a little less straightforward. If the firmware is unencrypted and there’s not a cryptographic signature, then you can just modify the firmware. Many devices include signature checking at boot, so that limits the attack to finding vulnerabilities and searching for embedded secrets. And then worst case, some platforms use entirely encrypted firmware. That means there’s another challenge, of either recovering the key, or finding a weakness in the encryption scheme. Continue reading “This Week In Security: Hardware Attacks, IoT Security, And More”

Homebrew PH Meter Uses Antimony Electrode

Understanding the nature of pH has bedeviled beginning (and not-so-beginning) chemistry students for nearly as long as chemistry has had students. It all seems so arbitrary, being the base-10 log of the inverse of hydrogen ion concentration and with a measurement range of 0 to 14. Add to that the electrochemical reactions needed to measure pH electronically, and it’s enough to make your head spin.

Difficulties aside, [Markus Bindhammer] decided to tackle the topic and came up with this interesting digital pH meter as a result. Measuring pH electronically is all about the electrode, or rather a pair of electrodes, one of which is a reference electrode. The potential difference between the electrodes when dipped into the solution under test correlates to the pH of the solution. [Markus] created his electrode by drawing molten antimony into a length of borosilicate glass tubing containing a solid copper wire as a terminal. The reference electrode was made from another piece of glass tubing, also with a copper terminal but filled with a saturated solution of copper(II) sulfate and plugged with a wooden skewer soaked in potassium nitrate.

In theory, this electrode system should result in a linear correlation between the pH of the test solution and the potential difference between the electrodes, easily measured with a multimeter. [Marb]’s results were a little different, though, leading him to use a microcontroller to scale the electrode output and display the pH on an OLED.

The relaxing video below shows the build process and more detail on the electrochemistry involved. It might be worth getting your head around this, since liquid metal batteries based on antimony are becoming a thing.

Continue reading “Homebrew PH Meter Uses Antimony Electrode”

Desert Island Acetylene From Seashells And Driftwood

[MacGyver] would be proud of [Hyperspace Pirate]’s rough and ready method of producing acetylene gas from seashells and driftwood.

Acetylene, made by decomposing calcium carbide with water, is a vitally important industrial gas. Not only as a precursor in many chemical processes, but also as the fuel for the famous “blue wrench,” a tool without which auto mechanics working in the Rust Belt would be reduced to tears. To avoid this, [Hyperspace Pirate] started by beachcombing for the raw materials: shells to make calcium oxide and wood to make charcoal. Charcoal is pretty easy; you just cook chunks of wood in a reducing environment to drive off everything but the carbon. Making calcium oxide from the calcium carbonate in the shells isn’t much harder, with ground seashells heated in a propane-fired furnace to release carbon dioxide.

With the raw ingredients in hand, things get a little tricky. Making calcium carbide requires a lot of heat, far more than a simple propane burner can provide. [Hyperspace Pirate] decided to go with an electric arc furnace, to which end he cannibalized a 120 V to 240 V step-up converter for its toroidal transformer, which with a few extra windings provided the needed current to run an arc through carbon electrodes. This generated the needed heat, and then some, as the ceramic firebrick he was using to contain the inferno melted. After rewinding the melted secondary windings on his makeshift transformer and switching to a stainless steel crucible, he was able to make enough calcium carbide to generate an impressive amount of acetylene. The video below documents the process and the sooty results, as well as details a little of the excitement that metal acetylides offer.

For more about acetylene and its many uses, [This Old Tony] has you covered.

Continue reading “Desert Island Acetylene From Seashells And Driftwood”