Robot Hand Goes Wireless

We can’t decide if [MertArduino’s] robotic hand project is more art or demonstration project. The construction using springs, fishing line, and servo motors isn’t going to give you a practical hand that could grip or manipulate anything significant. However, the project shows off a lot of interesting construction techniques and is a fun demonstration for using nRF24L01 wireless in a project. You can see a video of the contraption, below.

A glove uses homemade flex sensors to send wireless commands to the hand. Another Arduino drives an array of servo motors that make the fingers flex. You don’t get fine control, nor any real grip strength, but the hand more or less will duplicate your movements. We noticed one finger seemed poorly controlled, but we suspect that was one of the homemade flex sensors going rouge.

Continue reading “Robot Hand Goes Wireless”

Speech To Sign Language

According to the World Federation of the Deaf, there are around 70 million people worldwide whose first language is some kind of sign language. In the US, ASL (American Sign Language) speakers number from five hundred thousand to two million. If you go to Google translate, though, there’s no option for sign language.

[Alex Foley] and friends decided to do something about that. They were attending McHack (a hackathon at McGill University) and decided to convert speech into sign language. They thought they were prepared, but it turns out they had to work a few things out on the fly. (Isn’t that always the case?) But in the end, they prevailed, as you can see in the video below.

Continue reading “Speech To Sign Language”

Simple And Effective Car Lock Jammer Detector

[Andrew Nohawk], has noticed a spike of car break-ins and thefts — even in broad daylight — in his native South Africa. The thieves have been using remote jammers. Commercial detectors are available but run into the hundreds of dollars. He decided to experiment with his own rig, whipping up a remote jamming ‘detector’ for less than the cost of a modest meal.

Operating on the principle that most remote locks work at 433MHz, [Nohawk] describes how criminals ‘jam’ the frequency by holding down the lock button on another device, hoping to distort or outright interrupt the car from receiving the signal to lock the doors. [Nohawk] picked up a cheap 433MHz receiver (bundled with a transceiver), tossed it on a breadboard with an LED connected to the data channel of the chip on a 5V circuit, and voila — whenever the chip detects activity on that frequency, the LED lights up. If you see sustained activity on the band, there’s a chance somebody nearby might be waiting for you to leave your vehicle unattended.

If you want to know more about how these jamming attacks work, check out [Samy Kamkar’s] talk from the Hackaday SuperConference.

Continue reading “Simple And Effective Car Lock Jammer Detector”

The USB Killer: Now Faster, Better, More Anonymous

A few years ago, [Dark Purple] built the USB equivalent of an RJ45 connector wired into mains power. The USB Killer is a simple device with just a FET, a few high voltage caps, a DC/DC converter, and a USB connector. Plug this device into your computer and -220V is dumped directly into the USB signal wires. This kills your laptop dead.

Over the years we’ve seen the USB Killer evolve from a hand-etched PCB to something less discrete but more discreet. It was a crowdfunding campaign run by a company in Hong Kong, and a few months ago this new commercial version was released.

Now, the USB Killer V3 is out. It provides 1.5 times the power to your poor USB ports, with power surges twice as fast. There’s also an anonymous version that looks like every other USB thumb drive sourced from Hong Kong. This is your warning: never, ever plug an unknown USB thumb drive into your computer.

While a product announcement really isn’t news, it is extremely interesting to take a look at how something that should not exist is being marketed. As with all electronic destructive devices, it’s on your Amazon recommended products list alongside tactical kilts, fingerless gloves, beard oil, and black hoodies. This is pentesting gear, with an anonymous edition for your friend, the hacker called four chan. Don’t think too much about how you’re going to get data off a laptop you just killed, or how you would go undetected by destroying equipment; this is cool hacker stuff.

In addition, the USB Kill 2.0 is FCC and CE approved. This allows you to, “test in complete safety” (their emphasis, not ours).   We have no idea what this actually means.

Millimeter Wave RADAR Tracks Gestures

If we believe science fiction — from Minority Report to Iron Man, to TekWar — the future of computer interfaces belongs to gestures. There are many ways to read gestures, although often they require some sort of glove or IR emitter, which makes them less handy (no pun intended).

Some, like the Leap Motion, have not proved popular for a variety of reasons. Soli (From Google’s Advanced Technology and Projects group) is a gesture sensor that uses millimeter-wave RADAR. The device emits a broad radio beam and then collects information including return time, energy, and frequency shift to gain an understanding about the position and movement of objects in the field. You can see a video about the device, below.

You naturally think of using optical technology to look at hand gestures (the same way humans do). However, RADAR has some advantages. It is insensitive to light and can transmit through plastic materials, for example. The Soli system operates at 60 GHz, with sensors that use Frequency Modulated Continuous Wave (FMCW) and Direct-Sequence Spread Spectrum (DSSS). The inclusion of multiple beamforming antennas means the device has no moving parts.

Clearly, this is cutting-edge gear and not readily available yet. But the good news is that Infineon is slated to bring the sensors to market sometime this year. Planned early applications include a smart watch and a speaker that both respond to gestures using the technology.

Interestingly, the Soli processing stack is supposed to be RADAR agnostic. We haven’t investigated it, but we wonder if you could use the stack to process other kinds of sensor input that might be more hacker friendly? Barring that, we’d love to see what our community could come up with for solving the same problem.

We’ve seen Raspberry Pi daughter-boards (ok, hats) that recognize gestures used to control TVs. We’ve even built some crude gesture sensing using SONAR, if that gives you any ideas. Are you planning on using Soli? Or rolling your own super gesture sensor? Let us know and document your project for everyone over on Hackaday.io.

Continue reading “Millimeter Wave RADAR Tracks Gestures”

Softer Side Of Robots Is Future Of Space

What will next generation space suits look like? Kari Love is making the case that new space suits will exhibit the best in soft robot technology. The problem is that most people don’t really understand much about soft robots, or about space for that matter. Her talk at the Hackaday SuperConference explores the research she has been doing into future generations of space suits. Check out the video below and then join us after the break for more on this topic.

Continue reading “Softer Side Of Robots Is Future Of Space”

Lost Moon Found: The Satellite That Came Back To Life

The late 1950s and early 1960s were a tumultuous time in world history. The Cold War between the East and the West was in full-swing, driving the new fields of nuclear weapons and space exploration and giving the period its dual monikers of “Atomic Age” and “Space Age.”

Changes in these fields often went hand in glove, with developments in one requiring responses in the other. In 1958, the US conducted nuclear tests in the Pacific that effectively destroyed the ionosphere over the test site and shut down high-frequency communications to places like Hawaii and New Zealand. The strategic implications of this were clear, and the US began looking for ways for the military to reduce its reliance on HF communications and ionospheric skip by using space-based assets to communicate at much higher frequencies.

Continue reading “Lost Moon Found: The Satellite That Came Back To Life”