Peggy Whitson, Space Scientist

When astronaut Dr. Peggy Whitson returned from space earlier this year, it was a triumphant conclusion to a lifelong career as a scientist, explorer, and leader. Whitson is a biochemist who became one of the most experienced and distinguished astronauts ever to serve. She’s got more time logged in space than any other American. There’s a reason that she’s been called the Space Ninja.

Education and Early Life

Some people find their vocation late in life, but Peggy Whitson figured it out in her senior year of high school. It was 1979 and NASA had just accepted its first class of female astronauts, including Christa McAuliffe and Judith Resnik who ultimately died aboard the Challenger.

Born on a family farm in Iowa in 1960, Whitson began working on her plan, with the stereotypical Midwestern work ethic seeming to prime her for the hard slog ahead. She earned a BS in Biology/Chemistry, Summa, from Iowa Wesleyan, before earning a Ph.D. in biochemistry from Rice in 1985. A person can write about Whitson blazing through to a doctorate in a single sentence, but the truth is that it’s just a lot of hard work, and that’s one of the aspects of her career that stands out: she worked tirelessly.

Scientist Career

After getting her doctorate, Whitson worked as a research associate at Johnson Space Center as part of a post-doctoral fellowship. She put in a couple of years as a research biochemist, working on biochemical payloads
like the Bone Cell Research Experiment in STS-47, which was run in space by fellow badass Dr. Mae Jamison. Whitson hadn’t given up on her dream of becoming an astronaut herself, and the whole time she worked at Johnson she was applying to NASA. It took ten years and five applications before she made it in.

In the meantime, however, Whitson was given a lot of very cool projects and also began to establish her credentials as a leader, serving as Project Scientist of the Shuttle-Mir Program from 1992 till 1995. For three years she helped lead Medical Sciences Division at Johnson. The two years after that she co-chaired the NASA committee on US-Russian relations. And because she still had more time to crush it, she also worked as an adjunct professor at the University of Texas Medical Branch as well as at Rice.

Then, in April of 1996, she learned that her hard work had paid off and that she had been accepted into astronaut school. Peggy Whitson was going to space.

Ad Astra

It would be eight more years before she made it to space, however. Two years of intense training was followed by ground-based technical duties, including two years spent in Russia in support of NASA crews there. However, in 2002 she got her chance, flying in a Soyuz up to the International Space Station as part of Expedition 5. There she conducted science experiments and helped install new components in the space station, logging 164 days in space.

Back on earth, Whitson continued to kick ass as a scientist, astronaut, and leader. In 2003 she commanded a 10-day underwater mission that helps trains astronauts for extended stays in space, preparing her for her signature accomplishments: two tours where she commanded the ISS.

In 2008 she led Expedition 16, in which three additional modules were added to the ISS. Because of the new construction, and despite her science focus, Whitson became one of NASA’s most prolific spacewalkers, making 10 EVAs in her career — second only to cosmonaut Anatoly Solovyev’s 16 and her cumulative EVA time of 60 hours is third best in the world.

The three years that followed she served as Chief Astronaut, before she returned to space in November 2016 as commander of Expedition 50. Compared to 16 it was much more mellow, albeit with hundreds of biochemistry experiments conducted. In April of 2017, Whitson surpassed the U.S. space endurance record, earning her a call from the President. She ended up with 665 days in space, returning September 2 as a hero.

Dr. Peggy Whitson’s brilliance and tireless drive have earned her innumerable awards and commendations. Her elementary school has a science lab named after her. This year Glamour named her one of their women of the year. She serves as an inspiration to anyone who aspires to a career in science, math, or space exploration: it won’t be easy, and it will take a really long time, but it’s the kind of work that makes the world a distinctly better place.

Photo Credit: NASA

Need To Hold Something? Build A Custom Vise

The only thing better than making a cool project is making a cool project that helps make more projects! Case in point, [Greg Stephens] and [Alex] wanted to colorize steel bearings for use in a Newton’s Cradle desk toy. After trying out a torch and not liking it, [Greg] and [Alex] decided to build custom aluminum vise to hold the sphere while it sits in the magnetic induction forge.

Their vise–they call it the Maker’s Vise0–isn’t just a one-off project to help make the cradle. [Alex] and [Greg] aspire to create a tool useable for a wide variety of projects. They wanted it to be oil-less and it had to be customizable. Ideally it would also have an acceptable grip strength, be easy to use, and look good on the bench.

[Greg] and [Alex] have set up a Hackaday.io project, and their logs show a lot of progress with two finished iterations of the vise and a variety of 3D-printed and cast parts to go with. Recently they brought in a 2,000-lb. load test and tested it on their vise collection, including the two prototypes. Version one rated at 500 lbs. reasonable clamping pressure–meaning they didn’t exert themselves to max out the pressure. Version two sits at 800 lbs., still nothing like a desk vise but far stronger than a Panavise, for instance.

Their magnetic induction forge project was also a success, with the team able to quickly change the color of a steel ball. Check out a video after the break…

Continue reading “Need To Hold Something? Build A Custom Vise”

A Wallflower Jumps Into The Los Angeles Unconference

When I was asked to cover the Unconference in Los Angeles last week, I have to admit that I was a more than a little uncomfortable with the idea. I’m not big on traveling, and the idea of meeting a lot of folks was a little intimidating. Surely meeting Hackaday readers in person would be like walking into a real-life version of the comments section of a particularly controversial post. Right?

I couldn’t have been more wrong.

The LA Unconference, held at the Supplyframe Design Lab in Pasadena, was a far more collegial and engaging conference than any I’ve been to in my professional life. I couldn’t have asked for a better group to share the afternoon and evening with, and the quality of the talks was excellent. The Design Lab turned out to be a great space for the event — a large main room for the talks with plenty of little areas to break away for impromptu discussions and networking.

Continue reading “A Wallflower Jumps Into The Los Angeles Unconference”

What We Are Doing Wrong. The Robot That’s Not In Our Pocket

I’m not saying that the magic pocket oracle we all carry around isn’t great, but I think there is a philosophical disconnect between what it is and what it could be for us. Right now our technology is still trying to improve every tool except the one we use the most, our brain.

At first this seems like a preposterous claim. Doesn’t Google Maps let me navigate in completely foreign locations with ease? Doesn’t Evernote let me off-load complicated knowledge into a magic box somewhere and recall it with photo precision whenever I need to? Well, yes, they do, but they do it wrong. What about ordering food apps? Siri? What about all of these. Don’t they dramatically extend my ability? They do, but they do it inefficiently, and they will always do it inefficiently unless there is a philosophical change in how we design our tools.

Continue reading “What We Are Doing Wrong. The Robot That’s Not In Our Pocket”

Hackaday Links: May Day, 2016

Humble Bundle is a great way to fill up your Steam library – just pay what you want, and get some indie video games. The Humble Bundle is much more than video games, because No Starch Press just put up a bundle of books on hacking. No, there are no books about wearing balaclavas and using laptops with one hand. I haven’t written that book yet. There’s some choice books in this bundle, including [Bunnie]’s Hacking the XboxAutomate the Boring Stuff with Python, and Practical Malware Analysis.

The Raspberry Pi camera – the $25 add-on webcam that plugs directly into the Pi – is getting an upgrade. The original camera was a five Megapixel sensor that was EOL’d at the end of 2014. The Raspberry Pi foundation bought up a lot of stock, but eventually there would be a replacement. The new sensor is a Sony IMX219 eight Megapixel deal, available at the same price. We assume a NoIR version without the IR filter will be released shortly.

Here’s a little hardware review that doesn’t quite merit a full post. The Raspberry Pi Zero is great, and will be even better once production ramps up again and stock lands in warehouses. One problem with the Zero is the lack of USB ports, leading to at least two Hackaday posts with the exact same headline, ‘Yet Another Pi Zero USB Hub‘. Obviously, there’s a market for an easy to use USB hub for the Zero, and this company is stepping up to fill the need. The killer feature here is the use of pogo pins to tap into the USB differential lines, power and ground pads on the bottom of the Pi Zero. The USB hub is based on the popular FE 1.1 4-port USB hub controller, giving the Pi Zero four USB 2.0 ports. Does it work? Yeah, and it’s only $10. A pretty neat little device that will be very useful when Pi Zeros flood workbenches the world over.

It was announced in 2014, released in 2015, but the STM32F7 hasn’t seen a lot of action around these parts. A shame, because this is the upgrade to the famously powerful STM32F4 microcontroller that’s already capable of driving high-resolution displays through VGA, being an engine control unit for a 96 Ford Aspire, and being a very complex brushless motor driver. The STM32F7 can do all of these and more, and now ST is cutting prices on the F7’s Discovery Board. If you’re looking for a high-power ARM micro and don’t need to run Linux, you won’t do better elsewhere.

Need to reflow a board, but don’t have a toaster oven? Use a blowtorch! By holding a MAPP blowtorch a foot away from a board, [whitequark] was able to successfully reflow a large buck converter. There’s a lot of water vapor that will condense on the board, so a good cleaning afterward is a good idea.

A few weeks ago, [Mr. LeMieux] built a 360 degree, all-metal hinge. He’s been up to something a little more dangerous since then: building piles of mini table saws. Small table saws are useful for miniatures, models, and the like. [Mr. LeMieux]’s table saw is a piece of CNC’d aluminum, with a bearing and saw arbor that attaches to an electric drill. Dangerous, you say? Not compared to the competition. Behold the worst forty dollars I’ve ever spent. This Horror Freight mini table saw is by far the worst tool I’ve ever used. The bed was caked with streaky layers of paint, uneven, the blade wasn’t set at 90 degrees, and the whole thing was horrifically underpowered. Trust me when I say the CNC electric drill version is safer.

Hackaday Links: March 28, 2016

[Tom] sent this in to be filed under the ‘not a hack’ category, but it’s actually very interesting. It’s the User’s Guide for the Falcon 9 rocket. It includes all the data necessary to put your payload on a Falcon 9 and send it into space. It’s a freakin’ datasheet for a rocket.

A year ago in Japan (and last week worldwide), Nintendo released Pokkén Tournament, a Pokemon fighting game. This game has a new controller, the Pokkén Tournament Pro Pad. There were a few cost-cutting measures in the production of this game pad, and it looks like this controller was supposed to have force feedback and LEDs. If any Pokemon fans want to take this controller apart and install some LEDs and motors just to see what happens, there’s a Hackaday write up in it for you.

There are a lot of options for slicing 3D objects for filament-based 3D printers. Cura, Slic3r, and MatterControl are easily capable of handing all the slicing needs you’ll ever have for a filament 3D printer. For sterolithography (resin) printers, the options for slicing are limited. [skarab] just put together a new slicer for SLA that runs entirely in JavaScript. If anyone wants to turn a Raspi or BeagleBone into a network controller for a resin printer, here’s your starting point. [skarab] will be working on smoothieboard integration soon.

The STM32F4 is an extremely capable ARM microcontroller. It can do VGA at relatively high resolutions, emulate a Game Boy cartridge, and can serve as the engine control unit in a 1996 Ford Aspire. There’s a lot of computing power here, but only one true litmus test: the STM32F4 can run Doom. [floppes] built this implementation of Doom on the STM32F429 Discovery board to run off of an external USB memory stick. The frame rate is at least as good as what it was back in 1993.

The Oculus Rift has just come to pass, but one lucky consumer got his early. The first person to preorder the Rift, [Ross Martin] of Anchorage, Alaska, got his facehugger directly from [Palmer Luckey] in a PR stunt on Saturday afternoon. Guess what [Ross] is doing with his Rift?

rift

Second Life world thru Oculus Rift

Ask Hackaday: What Is The Future Of Virtual Reality?

Most of us have heard of Second Life – that antiquated online virtual reality platform of yesteryear where users could explore, create, and even sell content.  You might be surprised to learn that not only are they still around, but they’re also employing the Oculus Rift and completely redesigning their virtual world. With support of the DK2 Rift, the possibilities for a Second Life platform where users can share and explore each other’s creations opens up some interesting doors.

Envision a world where you could log on to a “virtual net”, put on your favorite VR headset and let your imagination run wild. You and some friends could make a city, a planet…and entire universe that you and thousands of others could explore. With a little bit of dreaming and an arduino, VR can bring dreams to life.

Continue reading “Ask Hackaday: What Is The Future Of Virtual Reality?”