Scratch Built Wind Turbine Makes Power And Turns Heads

If you’ve ever aspired to live off the grid, then it’s likely that one of the first things you considered was how to power all of your electrical necessities, and also where to uh… well we’ll stick to the electrical necessities. Depending on your location, you might focus on hydroelectric power, solar power, or even a wind turbine. Or, if you’re [Kris Harbor], all three. In the video below the break, we get to watch [Kris] as he masterfully rebuilds his wind turbine from scratch and reconfigures his charging solution to match.

The Rotors Are Built With a 3d Printed Rotor Jig

A true hacker at heart, [Kris] has used a everything from 3d printing to broken car parts in order to build his new wind turbine. The three phase generator is constructed from scratch.  A hand wound stator is held firmly between two magnetic rotors, where 3d printed jigs hold the magnets in place.

A CNC cut backing plate holds everything together while also supporting the automatically furling vane that keeps the entire turbine from self destructing in inclement weather. A damaged wheel hub from [Kris]’ Land Rover provides the basis for a bearing so that the entire turbine can turn to face the wind, and various machined parts round out the build. The only things we didn’t see in the build were hot glue and zip ties, but we remain hopeful. Continue reading “Scratch Built Wind Turbine Makes Power And Turns Heads”

The Trouble With Hubble: Payload Computer Glitch Stops Science At The Space Observatory

The Hubble Space Telescope’s remarkably long service life and its string of astonishing contributions to astronomy belie its troubled history. Long before its launch into low Earth orbit in 1990, Hubble suffered from design conflicts, funding and budgetary pressures, and even the death of seven astronauts. Long delayed, much modified, and mistakenly sent aloft with suboptimal optics, Hubble still managed to deliver results that have literally changed our view of the universe, and is perhaps responsible for more screensaver and desktop pictures than any other single source.

But all of that changed on June 13 of this year, when Hubble suffered a computer glitch that interrupted the flow of science data from the orbiting observatory. It’s not yet clear how the current issue with Hubble is going to pan out, and what it all means for the future of this nearly irreplaceable scientific asset. We all hope for the best, of course, but while we wait to see what happens, it’s worth taking the opportunity to dive inside Hubble for a look at its engineering and what exactly has gone wrong up there.

Continue reading “The Trouble With Hubble: Payload Computer Glitch Stops Science At The Space Observatory”

Fail Of The Week: How Not To Electric Vehicle

If you ever doubt the potential for catastrophe that mucking about with electric vehicles can present, check out the video below. It shows what can happen to a couple of Tesla battery modules when due regard to safety precautions isn’t paid.

The video comes to us by way of [Rich], a gearhead with a thing for Teslas. He clearly knows his way around the EV world, having rebuilt a flood-soaked Tesla, and aspires to open an EV repair shop. The disaster stems from a novelty vehicle he and friend [Lee] bought as a side project. The car was apparently once a Disney prop car, used in parades with the “Mr. Toad’s Wild Ride” theme. It was powered by six 6-volt golf cart batteries, which let it maintain a stately, safe pace on a crowded parade route. [Rich] et al would have none of that, and decided to plop a pair of 444-cell Tesla modules into it. The reduced weight and increased voltage made it a real neck-snapper, but the team unwisely left any semblance of battery management out of the build.

You can guess what happened next, or spin up to the 3:00 mark in the video to watch the security camera mayhem. It’s not clear what started the fire, but the modules started cooking off batteries like roman candles. Quick action got it pushed outside to await the fire department, but the car was a total loss long before they showed up. Luckily no other cars in the garage were damaged, nor were there any injuries – not that the car didn’t try to take someone out, including putting a flaming round into [Lee]’s chest and one into the firetruck’s windshield.

[Rich] clearly knew he was literally playing with fire, and paid the price. The lesson here is to respect the power of these beefy batteries, even when you’re just fooling around.

Continue reading “Fail Of The Week: How Not To Electric Vehicle”

Collecting, Repairing, And Wearing Vintage Digital Watches

Electronics enthusiasts have the opportunity to be on the very cusp of a trend with vintage digital watches (VDW). Vintage digital watches are those watches that from the late 70’s and throughout the 80’s. They’re unlike any watch style today, and for anyone around when they made their debut these deliver a healthy dose of nostalgia.

Monetarily speaking, it is not worth the money to pay a watch maker to restore a digital watch but for those of us with basic electronics skills we can put the time and effort into making them run again and be one of the few in possession of functioning VDW. It’s a statement as well as a sign of your own aptitude.

Earlier this year, Steven Dufresne walked us through the history of the digital watch. In this article we will dive into the world of vintage digital watch repair.

Continue reading “Collecting, Repairing, And Wearing Vintage Digital Watches”

Tube Amps Are Still Tubular In 2018

Our friend [Pete] was reminiscing over the golden days with his old and broken antique Grundig Majestic console when he realized it deserved proper refurbishing. Now, any generic stereo record player might not be worth the time and effort to fix, but this was not any generic stereo record player. [Pete’s] inherited Grundig Majestic was his childhood favorite due to the distinct sound it had from the tubes that were used as the active elements. So he set out to fix both tube amps inside of the system.

[Pete] has had some experience working with audio equipment in the past. He did what we all aspire to, and got paid for doing what he loves by creating tube amps as a side gig. When he had finally had enough of the sub-par quality of bluetooth speakers that we all put up with for convenience sake, he decided to finally fix his favorite radio that had been lying around for far too long. He got to work immediately in his notebook finding what parts would be necessary for the reboot. The build ended up consisting of a HT supply regulated at 350V, an LT supply half DC-regulated at 6.3V, a 12AX7 input/bass/treble section, 6922 concertina tubes, and an EL34 ultra-linear output section. The end results yielded one amp that sounded just like it did in his youth, and one that isn’t quite there yet.

The Grundig Majestic is not done with just yet though. [Pete] plans to add a couple of additional modifications to his beauty when he’s not too busy with the kids. Firstly, perfecting the second amp is a top priority. After that, installing red LEDs that illuminate underneath the tubes would indicate low voltage presence, whereas blue illumination would indicate HT was locked and loaded. Bias monitoring to keep him informed on the status of the circuit conditions would insure smooth sailing down the road. Adding a relay connection of the speakers to the output transformer would minimize a popping sound that is currently being made in the speakers when the HT is initially turned on. These small improvements are just that — small — but that is part of what makes home projects so rewarding. The more you use something at home, the more you realize what needs to be refined further, so you are constantly learning more. It is a gratifying experience that I hope all of our readers have the chance to come across.

Tube amps are no stranger to Hackaday. Some of us have even built a few ourselves.

Thanks [Sophi]

Via Sparkfun

Biometric Authentication With A Cheap USB Hub

It’s fair to say that fingerprints aren’t necessarily the best idea for device authentication, after all, they’re kind of everywhere. But in some cases, such as a device that never leaves your home, fingerprints are an appealing way to speed up repetitive logins. Unfortunately, fingerprint scanners aren’t exactly ubiquitous pieces of hardware yet. We wouldn’t hold out much hope for seeing a future Raspberry Pi with a fingerprint scanner sitting on top, for example.

Looking for a cheap way to add fingerprint scanning capabilities to his devices, [Nicholas] came up with a clever solution that is not only inexpensive, but multi-functional. By combining a cheap USB hub with a fingerprint scanner that was intended as a replacement part of a Thinkpad laptop, he was able to put together a biometric USB hub for around $5 USD.

After buying the Thinkpad fingerprint scanner, he wanted to make sure it would be detected by his computer as a standard USB device. The connector and pinout on the scanner aren’t standard, so he had to scrape off the plastic coating of the ribbon cable and do some probing with his multimeter to figure out what went where. Luckily, once he found the ground wire, the order of the rest of the connections were unchanged from normal USB.

When connected to up his Ubuntu machine, the Thinkpad scanner came up as a “STMicroelectronics Fingerprint Reader”, and could be configured with libpam-fprintd.

With the pintout and software configuration now known, all that was left was getting it integrated into the USB hub. One of the hub’s ports was removed and filled in with hot glue, and the fingerprint scanner connected in its place. A hole was then cut in the case of the hub for the scanner to peak out of. [Nicholas] mentions his Dremel is on loan to somebody else at the moment, and says he’ll probably try to clean the case and opening up a bit when he gets it back.

[Nicholas] was actually inspired to tackle this project based on a Hackaday post he read awhile back, so this one has truly come full circle. If you’d like to learn more about fingerprint scanning and the techniques being developed to improve it, we’ve got some excellent articles to get you started.

Disrupting The Computer Industry Before It Existed: Rear Admiral Grace Hopper

The feature of being easier to write than assembly is often seen as the biggest advantage of high-level programming languages. The other benefit that comes with them is portability. With high-level languages, algorithms can be developed independently from the underlying hardware. This allows software to live on once the hardware becomes obsolete.

The compiler was a concept that was met with resistance when it was first introduced. This was at a time when computers were custom-built machines bearing individual names like ENIAC, UNIVAC and Mark I. A time when the global demand for computers was estimated to be around five units by the CEO of IBM. In this scenario, it took a visionary to foresee a future where the number of computers would outgrow the number of programmers and hardware would evolve so much faster than software that a compiler would make sense. One visionary was [Grace Hopper].

Continue reading “Disrupting The Computer Industry Before It Existed: Rear Admiral Grace Hopper”