Organic Fibonacci Clock Is All About The Spiral

Whether you’re a fan of compelling Tool songs, or merely appreciate mathematical beauty, you might be into the spirals defined by the Fibonacci sequence. [RuddK5] used the Fibonacci curve as the inspiration for this fun clock build.

The intention of the clock is not to display the exact time, but to give a more organic feel of time, via a rough representation of minutes and hours. A strip of addressable LEDs is charged with display duty. The description is vague, but it appears that the 24 LEDs light up over time to show the amount of the day that has already passed by. The LEDs are wound up in the shape of a Fibonacci spiral with the help of a 3D printed case, and is run via a Wemos D1 microcontroller board.

It’s a fun build, and one that we can imagine would scale beautifully into a larger wall-hanging clock design if so desired. It at once could display the time, without making it immediately obvious, gradually shifting the lighting display as the day goes on.

We’ve seen other clocks rely on the mathematics of Fibonacci before, too. If you’ve cooked up your own fun clock build, don’t hesitate to let us know!

Triple Zone Clock Tells Time In Style

Although the cutoff for saying ‘Happy New Year’ is somewhere around today, there’s still plenty of time to reminisce about 2022 and all that we accomplished. Hackaday alum [Jeremy Cook] spent much of last year designing and building a triple-zone PCB clock, dubbed the 742 clock. It is called so because of all the 7-segments, and then 42 from the height in millimeters of each PCB. Also because it’s 24 backwards, and if we may be so bold, because 42.

If this looks familiar, it’s because we covered the single-panel version a few months ago. Much like that one, the triple time zone clock is controlled by a single Wemos D1 mini, and the other two panels are chained to the primary board. This version has a frame made of 20/20 extrusion with nice 3D printed caps on the ends to finish off the look.

As with the single-panel clock, this one uses bared-FR4 PCBs to diffuse the LEDs, and the effect looks really nice. We particularly like the capacitive corners that control the clock and the colors, which change throughout the day when left to their own devices. Be sure to check out the build video after the break.

Are you really into LEDs? Consider building a Berlin clock.

Continue reading “Triple Zone Clock Tells Time In Style”

Fritzing diagram of connections between the Wemos D1 board, the TP4056 board, the pushbutton and the LiIon battery

Battery-Powered ESP8266 Sensor? Never Been Simpler

Say, you’re starting your electronics journey with a few projects in mind. You have an ESP8266 board like the Wemos D1, a Li-Ion battery, you want to build a small battery-powered sensor that wakes up every few minutes to do something, and you don’t want to delve into hardware too much for now. Well then, does [Mads Chr. Olesen] have a tutorial for you! Here, you’ll learn the quick and easy way to get your sensor up and running, learn a few tricks for doing sleep Arduino environment, and even calculate how long your specific battery could last. Continue reading “Battery-Powered ESP8266 Sensor? Never Been Simpler”

A wooden scary face dispensing candy through its mouth

Automatic Candy Dispenser Takes The Hard Work Out Of Halloween

Halloween may be behind us, but we couldn’t resist showing you [Mellow]’s latest project: an automatic candy dispenser that takes the hard work out of serving trick-or-treaters. It’s a cool build that might serve as an inspiration for next year’s Halloween project, or perhaps for a different occasion altogether: think birthday parties or Valentine’s Day. After all, when’s a bad time to give sweet treats to someone you love?

The basic concept is a scary face, made of wood, that disgorges a set amount of candy through its mouth after you press its nose. The dispensing mechanism is made from 3D printed mechanical parts as well as a piece of drain pipe. Candy is stored in the pipe, with a servo-operated flap releasing a set amount each time the nose is pressed. [Mellow] cleverly designed the flap to be somewhat flexible, so that it wouldn’t crush any candy bars that got stuck between it and the pipe.

A Wemos D1 Mini reads out the nose switch and drives the candy-dispensing servo, as well as a further two servos that swivel the eyes left and right for an additional visual effect. The original idea was to have the eyes swiveling all the time, but because the mechanism turned out to be quite loud [Mellow] changed the code to only move them during the candy-dispensing process.

We’ve seen several designs for automated candy dispensers over the years, ranging from a Jack-o-Lantern that holds enough candy to feed a small city, to a beautifully over-engineered machine more suitable as a Valentine’s Day gift.

Continue reading “Automatic Candy Dispenser Takes The Hard Work Out Of Halloween”

Front Door Keys Hidden In Plain Sight

If there’s one thing about managing a bunch of keys, whether they’re for RSA, SSH, or a car, it’s that large amounts of them can be a hassle. In fact, anything that makes life even a little bit simpler is a concept we often see projects built on to of, and keys are no different. This project, for example, eliminates the need to consciously carry a house key around by hiding it in a piece of jewelry.

This project sprang from [Maxime]’s previous project, which allowed the front door to be unlocked with a smartphone or tablet. This isn’t much better than carrying a key, since the valuable piece of electronics must be toted along in place of one. Instead, this build eschews the smartphone for a ring which can be worn and used to unlock the door with the wave of a hand. The ring contains an RFID which is read by an antenna that’s monitored by a Wemos D1 Mini. When it sees the ring, a set of servos unlocks the door.

The entire device is mounted on the front of the door about where a peephole would normally be, with the mechanical actuators on the inside. It seems just as secure (if not more so) than carrying around a metal key, and we also appreciate the aesthetic of circuit boards shown off in this way, rather than hidden inside an enclosure. It’s an interesting build that reminds us of some other unique ways of unlocking a door.

Continue reading “Front Door Keys Hidden In Plain Sight”

Automatic Flag Waver Lets You Show Your Loyalty Without Getting Tired

A flag is a great tool to show your loyalty to a country, a sports team or even a philosophical movement. But there’s not so much you can actually do with a flag: you can either hang it somewhere, or wave it around to attact others to your cause. [Mellow] found that waving quickly becomes tiresome, and decided to design a machine that automates this task for him.

A man holding a device that waves two small rainbow flagsNow there’s a bit more involved in designing a proper flag-waver than simply moving the flag back and forth. Ideally, the fabric should flow smoothly from side to side and show both sides equally, in the same way a human would do when waving a big flag around. After a bit of research [Mellow] decided on a design that generates a rather complex motion using just a single servo: the mast is tilted from left to right, while gravity ensures the flag rotates around its axis. It’s probably best demonstrated visually, as [Mellow] does in the video embedded below.

The flag-waving mechanism is designed in Fusion 360 and 3D printed using white filament. Inside a little square box is a Wemos D1 Mini, powered by a lithium battery scavenged from a vape pen, as well as a battery management system and a power switch. The servo sits on top of the box and holds the flag in a little socket that allows the mast to rotate freely. [Mellow] also went one step further and built a two-flag waver, which still uses only one servo but creates two opposite motions through a set of spur gears. Both waver types bring a lively atmosphere to their surroundings, and we can actually imagine them being useful in places like sports bars.

Automatic flag-wavers are still rare devices, and as far as we can tell this is only the second one we’ve seen, after this hat-mounted example. That is, if you don’t count the automatic “flag” on this mailbox.

Continue reading “Automatic Flag Waver Lets You Show Your Loyalty Without Getting Tired”

Slap This Big Red Button For An Instant Social Media Detox

Dangerous machines, like ones that can quickly reduce you to a fine red mist or a smoking cinder, tend to have a Big Red Button™ to immediately stop whatever the threat is. Well, if a more dangerous machine than social media has ever been invented, we’re not sure what it would be, which is why we’re glad this social media kill switch exists.

The idea behind [Gunter Froman]’s creation is to provide a physical interface to SocialsDetox, a service that blocks or throttles connectivity to certain apps and websites. SocialDetox blocks access using either DNS over HTTPS (DoH) or, for particularly pesky and addictive apps, a service-specific VPN. The service does require a subscription, the cost of which varies by the number of devices you want to protect, but the charges honestly seem pretty reasonable.

While SocialsDetox can be set up to block access on a regular schedule, say if you want to make the family dinner a social-free time, there may be occasions where killing social access needs to happen right now. This is where the Big Red Button comes into it, which is attached to a Wemos D1 Mini. Pressing the kill switch sends an API request to either enable or disable the service, giving you a likely much-needed break from the swirling vortex of hate and envy that we all can’t seem to live without. Except for Hackaday, of course — it’s totally not like that here.

The irony of using an IoT appliance to restrict access to social media is not lost on us, but you work with the tools you’ve got. And besides, we like the physical interface here, which sort of reminds us this fitting enclosure for a PiHole.