The Cardboard Computer

Every time we say “We’ve seen it all”, along comes a project that knocks us off. 60 year old [Mark Nesselhaus] likes to learn new things and he’s never worked with hardware at the gate level. So he’s building himself a 4-bit Computer, using only Diode-Transistor Logic. He’s assembling the whole thing on “card board” perf-board, with brass tacks for pads. Why — because he’s a thrifty guy who wants to use what he has lying around. Obviously, he’s got an endless supply of cardboard, tacks and Patience. The story sounds familiar. It started out as a simple 4-bit full adder project and then things got out of hand. You know he’s old school when he calls his multimeter an “analog VOM”!

It’s still work in progress, but he’s made a lot of it in the past year. [Mark] started off by emulating the 4-bit full adder featured on Simon Inns’ Waiting for Friday blog. This is the ALU around which the rest of his project is built. With the ALU done, he decided to keep going and next built a 4-to-16 line decoder — check out the thumbnail image to see the rats nest of jumbled wires. Next on his list were several flip flops — R-S, J-K and D types, which would be useful as program counters. This is when he bumped into problems with signal levels, timing and triggering. He decided to allow himself the luxury of adding one IC to his build — a 555 based clock generator. But he still needed some pulse shaping circuitry to make it work consistently.

from right, Input, +5V, nc, gnd
LED Driver : from left, Gnd, NC, +5V, Input

[Mark] also built a finite-state-machine sequencer based on the work done by Rory Mangles TinyTim project. He finished building some multiplexers and demultiplexers, and it appears he may be using a whole bank of 14 wall switches for address, input and control functions. For the output display, he assembled a panel using LED’s recovered from a $1 Christmas light string. Something seems amiss with his LED driver, though — 2mA with LED on and >2.5mA with LED off. The LED appears to be connected across the collector and emitter of the PNP transistor. Chime in with your comments.

This build seems to be shaping along the lines of the Megaprocessor that we’ve swooned over a couple of times in the past. Keep at it, [Mark]!

Continue reading “The Cardboard Computer”

A Bold Experiment In A Decentralised Low Voltage Local DC Power Grid

January, for many of us in the Northern Hemisphere, can be a depressing month. It’s cold or wet depending where you live, the days are still a bit short, and the summer still seems an awfully long way away. You console yourself by booking a ticket to a hacker camp, but the seven months or so you’ll have to wait seems interminable.

If you want an interesting project to look forward to, take a look at [Benadski]’s idea for a decentralised low voltage local DC power grid for the upcoming SHA 2017 hacker camp in the Netherlands. The idea is to create a network that is both safe and open for hacking, allowing those with an interest in personal power generation to both have an available low-voltage power source and share their surplus power with other attendees.

The voltage is quoted as being 42V DC +/- 15%, which keeps it safely under the 50V limit set by the European Low Voltage Directive. Individuals can request a single 4A connection to the system, and villages can have a pair of 16A connections, which should supply enough for most needs. Users will need to provide their own inverters to connect their 5V or 12V appliances, fortunately a market served by numerous modules from your favourite Far Eastern sales portal.

This project will never be the solution to all power distribution needs, but to be fair that is probably not the intention. It does however provide a platform for experimentation, collaboration, and data gathering for those interested in the field, and since it is intended to make an appearance at future hacker camps there should be the opportunity for all that built up expertise to make it better over time.

We’ve touched on this subject before here at Hackaday, with our look at the availability of standard low voltage DC domestic connectors.

Wind turbine image: Glogger (CC BY-SA 3.0) via Wikimedia Commons.

3D-Printed Strain Wave Gear Needs Your Help

In most mechanical systems, metal gears that bend are a bad thing. But not so for strain wave gearing, which is designed to take advantage of a metal gear flexing to achieve an action much like planetary gears. The fun isn’t limited to metal anymore, though, if you 3D print a strain wave gear like this.

Strain-wave gearing is nothing new – it was invented in 1957 and has traveled to the moon on the lunar rover. And you may recall [Kristine Panos]’ recent article on a LEGO strain wave gear, which makes it easy to visualize how they work. She also has a great description of how the flex spline, wave generator, and circular spline interact, so we’ll spare those details here. [Simon Merret]’s interpretation of the strain wave gear is very simple and similar to other 3D-printed versions, except that he uses an inside-out timing belt as the flex spline. The wave generator is just an arm with a roller bearing at each end, and despite needing a few tweaks the gear does an admirable job.

Simon is reaching out for help in getting this gear ready for use where the industrial versions see frequent application – the first and second degrees of freedom of robotic arms. If you’ve got any ideas, head over to his project page on Hackaday.io and pitch in.

Continue reading “3D-Printed Strain Wave Gear Needs Your Help”

LED Strip Display Gives You Two Ways To See The Music

What to call this LED strip music visualizer is a puzzler. It lights up and pulsates in time with music similar to the light organs of 1970s psychedelia fame, but it’s more than that. Is it more like the Larson Scanner that graced the front of [David Hasselhoff]’s ride on Knight Rider? A little, but not quite.

description-croppedWhatever you decide to call this thing, it looks pretty cool, and [Scott Lawson] provides not one but two ways to build it. The business end is a simple strip of WS2812b addressable LEDs. It looks like the first incarnation of the project had an ESP8266 driving the LEDs in response to commands sent to it from a PC running the visualization code, written in Python. That setup keeps the computationally intensive visualization code separate from the display, but limits the display to 256 pixels and probably has to deal with network latency. The Raspberry Pi version both crunches the numbers and drives the display, but the Pi doesn’t have the oomph to run both the LEDs and the GUI, which is pretty interesting to look at by itself. The video below shows the different visualization modes available — we’re partial to the “energy effect” at the end.

Take your pick of hardware and throw a couple of these things together for your next rave. And if you need a little more background on the aforementioned Larson Scanner, we’ve got you covered.

Continue reading “LED Strip Display Gives You Two Ways To See The Music”

Sculptural Nixie Clock Has Shockingly Exposed Design

Single tube Nixie clocks? Been there, seen that. A single tube Nixie clock with sculptural wiring that exposes dangerous voltages? Now that’s something you don’t see every day.

[Andrew Moser]’s clock is clearly a case of aesthetic by anesthetic — he built it after surgery while under the influence of painkillers. That may explain the questionable judgment, but we won’t argue with the look. The boost converter for the Nixie lives near the base of the bent wire frame, with the ATmega 328 and DS1307 RTC supported in the midsection by the leads of attached passive components and jumper wires. A ring at the top of the frame supports the octal socket for the Nixie and a crown of driver transistors for each element.

In the video after the break, [Andrew] speaks of rebuilding this on a PCB. While we’ve seen single tube Nixie PCB clocks before, and we agree that the design needs to be safer, we wouldn’t ditch the dead bug style at all. Maybe just throw the whole thing in a glass bell jar or acrylic tube.

Continue reading “Sculptural Nixie Clock Has Shockingly Exposed Design”

New Caps And RAM Save Another Poly-1

1980s American teenagers, if they were lucky enough to attend a school with a computer lab, would have sat down in front of Apple IIs or maybe Commodore VIC20s. Similarly, their British cousins had BBC Micros. Solid and educational machines with all sorts of wholesome software, which of course the kids absolutely preferred to run in preference to playing computer games.

New Zealanders, at least a few of them, had the Poly-1. A footnote in the 8-bit microcomputer story, this was a home-grown computer with a built-in monitor clad in a futuristic one-piece plastic shell. Non-Kiwis never had the chance to encounter its 6809 processor and 64k of RAM, the global computer business being too great a challenge for a small New Zealand technology company, especially one whose government support had evaporated.

Decades after the end of Poly-1 production, some survive in the hands of enthusiasts. [Terry Stewart] has two of them, and has posted details of how he brought life back to one that was dead on arrival. It’s a story first of a failed electrolytic capacitor and tricky-to-dismantle PSU design, then of an almost-working computer whose random crashes were eventually traced to a faulty RAM chip. It seems swapping out that quantity of DIL RAM chips is rather tedious, and of course it had to be the final chip in the final bank that exhibited the problem.

Meanwhile it’s interesting to see the design of this unusual machine. A linear power supply contrasts with the switcher you’d have found in an Apple II at the time, and the motherboard is a huge affair. it’s easy to see why this was a relatively expensive machine.

We brought you [Terry]’s first Poly-1 last year, but so far he’s the only owner whose machine we’ve seen. More mainstream 8-bit machines are a common sight here, so for something else a bit esoteric read our coverage of home computers behind the Iron Curtain, and its companion piece on peripherals behind the Iron Curtain.

[via Hacker News]

This Tampon Gun Won’t Cramp Your Style

Finally, there’s a way to get rid of those applicator-less tampons that literally no one uses while also destroying a bunch of Axe body spray. Just use the Axe as the propellant in a 3D-printed, gas-powered tampon gun.

As you’ll see in the assembly and demonstration video after the break, most of the parts in [HarambesLabs]’ modular gun design are 3D-printed. Aside from those, you just need to add a PVC tube for a barrel, a bottle that fits the threading on the body, and a pair of o-rings to make a nice, tight seal. Snap in the piezo mechanism from a lighter, fill the bottle with an Axe cloud, and screw it on to the body. If the gas/air mixture is close enough, the compacted cotton bullet should fly. The gun is single-shot, but [HarambesLabs] is working on a mod to make it fully automatic.

We love a good gun build around here, be it mostly benign or downright terrifying. This build isn’t necessarily tampon-dependent but the size, weight, and plastic covering (reducing friction) make it ideal for this particular design. Nerf darts may be another option if you can find the correct fit for the barrel.

Continue reading “This Tampon Gun Won’t Cramp Your Style”