Autonomous Delivery: Your Impulse Buys Will Still Be Safe

I heard a “Year in Review” program the other day on NPR with a BBC World Service panel discussion of what’s ahead for 2017. One prediction was that UAV delivery of packages would be commonplace this year, and as proof the commentator reported that Amazon had already had a successful test in the UK. But he expressed skepticism that it would ever be possible in the USA, where he said that “the first drone that goes over somebody’s property will be shot down and the goods will be taken.”

He seemed quite sincere about his comment, but we’ll give him the benefit of the doubt that he was only joking to make a point, not actually grotesquely ignorant about the limitations of firearms or being snarky about gun owners in the US. Either way, he brings up a good point: when autonomous parcel delivery is commonplace, who will make sure goods get to the intended recipient?

Continue reading “Autonomous Delivery: Your Impulse Buys Will Still Be Safe”

Raspberry Pi Launches Compute Module 3

The forgotten child of the Raspberry Pi family finally has an update. The Raspberry Pi Compute Module 3 has been launched.

The Pi 3 Compute Module was teased all the way back in July, and what we knew then is just about what we know now. The new Compute Module is based on the BCM2837 processor – the same as found in the Raspberry Pi 3 – running at 1.2 GHz with 1 gigabyte of RAM. The basic form factor SODIMM form factor remains the same between the old and new Compute Modules, although the new version is 1 mm taller.

The Compute Module 3 comes with four gigabytes of eMMC Flash and sells for $30 on element14 and RS Components. There’s also a cost-reduced version called the Compute Module 3 Light that forgoes the eMMC Flash and instead breaks out those pins to the connector, allowing platform integrators to put an SD card or Flash chip on a daughter (mother?) board. The CM3 Lite version sells for $25. Continue reading “Raspberry Pi Launches Compute Module 3”

A Simple Route To A Plug Top Pi

There are a host of tiny plug-top computers available for the experimenter who requires an all-in-one mains-powered computing platform without the annoyance of a full-sized PC or similar. But among the various models there has always been something missing, a plug-top Raspberry Pi. To address that gap in the market, [N-O-D-E] has created a fusion of Pi and plug using the official Raspberry Pi PSU accessory and a Raspberry Pi Zero, with a UUGear Zero4U USB hub sandwiched between the two.

It’s a pretty straightforward and simple build, the back of the PSU is formed into a flat surface with a bit of Sugru, then the power cable is stripped back to its wires which are then connected to the power pins on the USB hub. The hub is then attached to the Sugru — he doesn’t say how, but we suspect double-sided tape — and the Pi is mounted on top of the hub. Pogo pins make the required connections to the pads on the underside of the computer, so it can be removed and replaced at will.

The result is a useful addition to your Pi arsenal, one that could be used for a host of little stand-alone devices. It could use a cover, however we suspect a 3D printer owner could create themselves one with relative ease. The full description is shown in the video below the break.

Continue reading “A Simple Route To A Plug Top Pi”

An Intel 8085 Microprocessor Trainer

The Intel 8085 microprocessor was introduced 40 years back, and along with its contemporaries — the Z80 and the 6502 — is pretty much a dinosaur in terms of microprocessor history. But that doesn’t stop it from still being included in the syllabus for computer engineering students in many parts of the world. The reason why a 40 year old microprocessor is still covered in computer architecture text books instead of computer history is a bit convoluted. But there’s a whole industry that thrives on the requirements of college laboratories and students requiring “8085 Microprocessor Training Kits”. [TisteAndii] just finished college in Nigeria, where these kits are not locally built and need to be imported, usually costing well over a 100 dollars.

Which is why his final year project was a low cost Intel 8085 Microprocessor Trainer. It’s a minimalist design with some basic read/write memory, program execution and register inspection, with no provision for single stepping or interrupts yet. The monitor program isn’t loaded in an EEPROM. Instead, a PIC18 is used and connected to the 8085 address, data and control pins. This makes it easier to write a monitor program in C instead of assembly. And allows use of a 1.8″ LCD with SPI interface instead of the more usual 7-segment displays used for these kind of kits. [TisteAndii] built a 6×4 keyboard for input, but couldn’t solve debounce issues and finally settled on a 5×4 membrane keypad.

Being a rookie, he ended up with a major flaw in his board layout — he missed connecting the SRAM and the PPI devices to the data bus. A bunch of jumper links seemed to solve the issue, but it wasn’t perfect. This, and a few other problems gave him a lot of grief, but towards the end, it all worked, almost. Most importantly, his BoM cost of about $35 makes it significantly cheaper compared to the commercial units available in Nigeria.

While some hackers may consider this a trivial project, it solves a local problem and we hope the next iteration of the design improves the kit and makes it more accessible.

Alexa Keeps Pet Snake Thermoregulated

[Chris Grill] got his hands on a pet boa constrictor, which requires a fairly strict temperature controlled environment. Its enclosure needs to have a consistent temperature throughout, or the snake could have trouble regulating its body temperature. [Chris] wanted to keep tabs on the temp and grabbed a few TTF-103 thermistors and an Arduino Yun, which allowed him to log the temperature on each side of the enclosure. He used some code to get the temp reading to the linux side of an Arduino Yun, and then used jpgraph, a PHP graphing library, to display the results.

snakemainBut that wasn’t good enough. Why not get a little fancy and have Amazon’s Echo read the temps back when you ask! Getting it setup was not so bad thanks to Amazon’s well documented steps to get custom commands set up.

He eventually lost the battle to get the Echo to talk to the web server on the Yun due to SSL issues, but he found an existing workaround by using a proxy.

Continue reading “Alexa Keeps Pet Snake Thermoregulated”

Hackaday Links: January 15, 2017

What’s more expensive than a car and a less useful means of transportation? A 747 flight simulator built in a basement. There’s a project page where a few more details are revealed. There’s a 180 degree wrap-around screen for the main display, a glass cockpit, and the controls and gauges are ‘good enough’ to feel like the real thing. The simulator is running a highly customized version of FS9 (Microsoft’s flight sim from the year 2004).

For the last few years, Google has been experimenting with high altitude balloons delivering Internet to remote populations. This is Project Loon, and simply by the fact that Google hasn’t shuttered this Alpha-bit, we can assume the project is a success. A Project Loon balloon recently crashed in Panama, which means we can get an up-close look at the hardware. These balloon base stations are a lot bigger than you would think.

We’ve seen beautiful PCBs before, but [Blake] is taking this to another level entirely. He’s developed a process to convert bitmaps into files suitable to send to a PCB manufacturer. The results are… strange, and very cool. Check out a video of the process here.

If you want to dial out from behind the great firewall of China, you’re probably going to use a VPN. Here’s an idea that doesn’t work as well as a VPN. Use an acoustic coupler with your iPhone. Will it work? Of course it will – modems have been standardized for fifty years. Will it work well? No, I can speak faster than 300 baud.

Do you sell on Tindie? We have a dog park. Tindie sellers around the world will be meeting up on Hackaday.io next Friday to discuss Tindie and Tindie-related activities. Join in!

A quick aside relating to Hackaday and Tindie swag. 1) The Tindie dog as a stuffed animal. 2) A Hackaday logo t-shirt where the skull is decorated like a Día de Muertos sugar skull. Pick one, leave your response in the comments.

Shmoocon 2017: A Simple Tool For Reverse Engineering RF

Anyone can hack a radio, but that doesn’t mean it’s easy: there’s a lot of mechanics that go into formatting a signal before you can decode the ones and zeros.

At his Shmoocon talk, [Paul Clark] introduced a great new tool for RF Reverse Engineering. It’s called WaveConverter, and it is possibly the single most interesting tool we’ve seen in radio in a long time.

If you wanted to hack an RF system — read the data from a tire pressure monitor, a car’s key fob, a garage door opener, or a signal from a home security system’s sensor — you’ll be doing the same thing for each attack. The first is to capture the signal, probably with a software defined radio. Take this data into GNU Radio, and you’ll have to figure out the modulation, the framing, the encoding, extract the data, and finally figure out what the ones and zeros mean. Only that last part, figuring out what the ones and zeros actually do, is the real hack. Everything before that is just a highly advanced form of data entry and manipulation.

[Paul]’s WaveConverter is the tool built for this data manipulation. Take WaveConverter, input an IQ file of the relevant radio sample you’d like to reverse engineer, and you have all the tools to turn a radio signal into ones and zeros at your disposal. Everything from determining the preamble of a signal, figuring out the encoding, to determining CRC checksums is right there.

All of this is great for reverse engineering a single radio protocol, but it gets even better. Once you’re able to decode a signal in WaveConverter, it’s set up to decode every other signal from that device. You can save your settings, too, which means this might be the beginnings of an open source library of protocol analyzers. If someone on the Internet has already decoded the signals from the keyfob of a 1995 Ford Taurus, they could share those settings to allow you to decode the same keyfob. This is the very beginnings of something very, very cool.

The Github repo for WaveConverter includes a few sample IQ files, and you can try it out for yourself right now. [Paul] admits there are a few problems with the app, but most of those are UI changes he has in mind. If you know your way around programming GUIs, [Paul] would appreciate your input.