Hacker Helps His Mother Lift Her Walker When He’s Not There

[typo]’s mother gets around with a walker. It’s a great assistive device until she has to lift the heavy thing up into her car. Noting that this was a little cruel he did as any hacker would and found a way to automate the process.

The build is pretty cool. She had to give up her passenger seat, but it’s a small price to pay for independence. He removed the door paneling on the passenger side. Then he welded on a few mounting points. Next he had to build the device.

The well-built device has a deceptively simple appearance. The frame is made from CNC milled panels and the ever popular aluminum extrusion. It uses a 12V right angle drive and some belting to lift the chair. There’s no abundance of fancy electronics here. A toggle switch changes the direction of the motor. There are some safety endstops and an e-stop.

Now all she has to do is strap the walker to the door. She picks the direction she wants the lift to go and presses a button. After which she walks the short distance to the driver’s seat, and cruises away.

Amazon Dash Reboots Your Pi

We all know feature creep can be a problem in almost any project. A simple idea can often become unusable if a project’s scope isn’t clearly defined in the beginning. However, the opposite problem sometimes presents itself: forgetting to include a key feature. [Zach] had this problem when he built a Raspberry Pi magic mirror and forgot to build a physical reset/shutoff switch. Luckily he had a spare Amazon Dash button and re-purposed it for use with his Pi.

The Raspberry Pi doesn’t include its own on/off switch. Without installing one yourself, the only way to turn off the device (without access to the terminal) is to unplug it, which can easily corrupt data on the SD card. Since [Zach]’s mirror was already complete, he didn’t want to take the entire thing apart just to install a button. There’s already a whole host of applications for the Dash button, so with a little Node.js work on the Raspberry Pi he was able to configure a remote-reset button for his mirror.

This is a similar problem for most Raspberry Pi owners, so if you want to follow [Zach]’s work he has done a great job detailing his process on his project site. If you’re looking for other uses for these convenient network-enabled buttons, he also links to a Github site with lots of other projects. This pizza button is probably our favorite, though.

A Lot Of WiFi Power, A Yagi, And A Sniper’s ‘Scope

Do you remember the early days of consumer wireless networking, a time of open access points with default SSIDs, manufacturer default passwords, Pringle can antennas, and wardriving? Fortunately out-of-the-box device security has moved on in the last couple of decades, but there was a time when most WiFi networks were an open book to any passer-by with a WiFi-equipped laptop or PDA.

The more sophisticated wardrivers used directional antennas, the simplest of which was the abovementioned Pringle can, in which the snack container was repurposed as a resonant horn antenna with a single radiator mounted on an N socket poking through its side. If you were more sophisticated you might have used a Yagi array (a higher-frequency version of the antenna you would use to receive TV signals). But these were high-precision items that were expensive, or rather tricky to build if you made one yourself.

In recent years the price of commercial WiFi Yagi arrays has dropped, and they have become a common sight used for stretching WiFi range. [TacticalNinja] has other ideas, and has used a particularly long one paired with a high-power WiFi card and amplifier as a wardriver’s kit par excellence, complete with a sniper’s ‘scope for aiming.

The antenna was a cheap Chinese item, which arrived with very poor performance indeed. It turned out that its driven element was misaligned and shorted by a too-long screw, and its cable was rather long with a suspect balun. Modifying it for element alignment and a balun-less short feeder improved its performance no end. He quotes the figures for his set-up as 4000mW of RF output power into a 25dBi Yagi, or 61dBm effective radiated power. This equates to the definitely-illegal equivalent of an over 1250W point source, which sounds very impressive but somehow we doubt that the quoted figures will be achieved in reality. Claimed manufacturer antenna gain figures are rarely trustworthy.

This is something of an exercise in how much you can push into a WiFi antenna, and his comparison with a rifle is very apt. Imagine it as the equivalent of an AR-15 modified with every bell and whistle the gun store can sell its owner, it may look impressively tricked-out but does it shoot any better than the stock rifle in the hands of an expert? As any radio amateur will tell you: a contact can only be made if communication can be heard in both directions, and we’re left wondering whether some of that extra power is wasted as even with the Yagi the WiFi receiver will be unlikely to hear the reply from a network responding at great distance using the stock legal antenna and power. Still, it does have an air of wardriver chic about it, and we’re certain it has the potential for a lot of long-distance WiFi fun within its receiving range.

This isn’t the first wardriving rifle we’ve featured, but unlike this one you could probably carry it past a policeman without attracting attention.

Not Just Another Alarm Clock

Even though [Stefan] sent in this link with the heading “Another Sunrise Alarm Clock“, it’s anything but plain. Sure, from the outside it looks like a simple and refined design, but the story of getting there is hardly straightforward.

chordegg2015tonegenTake that nice-looking luminous dial. [Stefan] made it himself, using the same techniques that he’s used for making his own watch faces. (Amazingly, he prints them out on a color ink-jet.) This is a sunrise wake-up clock, but if the bright LEDs don’t wake him up, there’s also a vintage DIY synthesizer project stuffed in the box in place of a cheap piezo buzzer. Even the wooden case shows attention to detail — it has nice edging done on a router table.

So yeah, we’ve all seen clocks before. But this one is very personal, melding together a few of [Stefan]’s hobbies into one useful, and good-looking, device.

Hackaday Prize Entry: FLipMouse

The theme of the last Hackaday Prize challenge was Assistive Technologies, and with this comes technical solutions for people with severe motor restriction. One of the best we’ve seen is a device designed to use a sip and puff interface and buttons to control a cursor through USB. The almost too clever name for a device meant to be used via fingers or lips is the FLipMouse, and right now it’s in the running for the finals in the Hackaday Prize.

The FLipMouse isn’t so much a mouse as it is a very long and very sensitive joystick. The main method of interaction is a long, hollow tube wrapped with force sensors. These force sensors, like those seen in the Nintendo Power Glove or this other Hackaday Prize entry, turn the tube into an exceptionally sensitive joystick, meant to be gripped by the user’s lips. This tube is hollow, too, so a sip-and-puff interface is used to register right and left clicks. Of course, there are a few external buttons that may be remapped to anything.

How useful is it? This mouth-based mouse seems to be exceptionally capable. In the video below, [Harry Hötzinger] plays a synthesizer live on stage using a step sequencer and a mouse-controlled synth interface. It’s all highly optimized for the specific piece of music, but it is an incredible display of what you can do with a laser cutter and a Digikey BOM.

Continue reading “Hackaday Prize Entry: FLipMouse”

Raspberry Pi Want A Cracker?

If you watch the old original Star Trek, you’ll notice that the computers on board the Enterprise don’t look much like our computers (unless you count the little 3.5 inch floppies that looked pretty close to the real thing). Then again, the Enterprise didn’t need keyboards and screens since the computers did a pretty good job of listening and speaking to humans.

We aren’t quite to the point where you can just ask the computer some fuzzy open-ended question like Captain Kirk did, but we do have things like Echo, Siri, and Google Now that do a fair job of listening to you and replying. In fact, Google provides an API that can do speech recognition and generation. [Giulio] used some common Python libraries to add speech I/O to a Raspberry Pi.

Continue reading “Raspberry Pi Want A Cracker?”

Counting Eggs With A Webcam

You’ll have to dig out your French dictionary (or Google translate) for this one, but it is worth it. [Nicolas Giraud] has been experimenting with ways to use a webcam to detect the number of eggs chickens have laid in a chicken coop. This page documents these experiments using a number of different algorithms to automatically detect the number of eggs and notify the owner. The system is simple, built around a Pi running Debian Jesse Lite and a cheap USB webcam. An LED running off one of the GPIO pins illuminates the eggs, and the camera then captures the image for analysis.

Continue reading “Counting Eggs With A Webcam”