Japan Wants To Decarbonize With The Help Of Ammonia

With climate change concerns front of mind, the world is desperate to get to net-zero carbon output as soon as possible. While direct electrification is becoming popular for regular passenger cars, it’s not yet practical for more energy-intensive applications like aircraft or intercontinental shipping. Thus, the hunt has been on for cleaner replacements for conventional fossil fuels.

Hydrogen is the most commonly cited, desirable for the fact that it burns very cleanly. Its only main combustion product is water, though its combustion can generate some nitrogen oxides when burned with air. However, hydrogen is yet to catch on en-masse, due largely to issues around transport, storage, and production.

This could all change, however, with the help of one garden-variety chemical: ammonia. Ammonia is now coming to the fore as an alternative solution. It’s often been cited as a potential way to store and transport hydrogen in an alternative chemical form, since its formula consists of one nitrogen atom and three hydrogen atoms.However, more recently, ammonia is being considered as a fuel in its own right.

Let’s take a look at how this common cleaning product could be part of a new energy revolution.

Continue reading “Japan Wants To Decarbonize With The Help Of Ammonia”

£D printed parts with glossy toner transfer images on

Add Full-Color Images To Your 3D Prints With Toner Transfer

Toner transfer is a commonly-used technique for applying text and images to flat surfaces such as PCBs, but anybody who has considered using the same method on 3D prints will have realized that the heat from the iron would be a problem. [Coverton] has a solution that literally turns the concept on its head, by 3D printing directly onto the transparency sheet.

instrument panel design with toner transfer markings
The fine detail is great for intuitive front-panel designs

The method is remarkably straightforward, and could represent a game-changer for hobbyists trying to achieve professional-looking full-color images on their prints.

First, the mirrored image is printed onto a piece of transparency film with a laser printer. Then, once the 3D printer has laid down the first layer of the object, you align the transparency over it and tape it down so it doesn’t move around. The plastic that’s been deposited already is then removed, and a little water is placed on the center of the bed. Using a paper towel, the transparency gets smoothed out until the bubbles are pushed off to the edges.

Another few pieces of tape hold the transparency down on all corners, and the hotend height is adjusted to take into account the transparency thickness. From there, the print can continue on as normal. When finished, the image should be fused with the plastic. If it’s hard to visualize, check out the video after the break for a step-by-step guide.

There are, of course, some caveats. Aligning the transfer and the print looks a little fiddly at the moment, the transparency material used (obviously) has to be rated for use in laser printers, and it only works on flat surfaces. But on the other hand, there will be some readers who already have everything they need to try this out at home right now — and we’d love to see the results!

We’ve covered some other ways to get color and images onto 3D prints in the past, such as this hydrographic technique or by using an inkjet printhead, but [Coverton]’s idea looks much simpler than either of those.  If you’re interested in toner transfer for less heat-sensitive materials, then check out this guide from a few years back, or see what other Hackaday readers have been doing on wood or brass.

Continue reading “Add Full-Color Images To Your 3D Prints With Toner Transfer”

When 3D Printing Gears, It Pays To Use The Right Resin

There are plenty of resins advertised as being suitable for functional applications and parts, but which is best and for what purpose?

According to [Jan Mrázek], if one is printing gears, then they are definitely not all the same. He recently got fantastic results with Siraya Tech Fast Mecha, a composite resin that contains a filler to improve its properties, and he has plenty of pictures and data to share.

[Jan] has identified some key features that are important for functional parts like gears. Dimensional accuracy is important, there should be low surface friction on mating surfaces, and the printed objects should be durable. Of course, nothing beats a good real-world test. [Jan] puts the resin to work with his favorite method: printing out a 1:85 compound planetary gearbox, and testing it to failure.

The results? The composite resin performed admirably, and somewhat to his surprise, the teeth on the little gears showed no signs of wear. We recommend checking out the results on his page. [Jan] has used the same process to test many different materials, and it’s always updated with all tests he has done to date.

Whether it’s working out all that can go wrong, or making flexible build plates before they were cool, We really admire [Jan Mrázek]’s commitment to getting the most out of 3D printing with resin.

Reverse Engineering Hack Chat With Matthew Alt

Join us on Wednesday, September 28 at noon Pacific for the Reverse Engineering Hack Chat with Matthew Alt!

Our world is full of mysteries, from the nature of time to how exactly magnets work. There are some things that we just have to accept that no matter how hard we look, we’ll never get a complete answer, especially in the natural world. The constructed world is another thing, though. It doesn’t seem fair that only a relatively few people have the inside scoop on the workings of everyday things, like network routers, game consoles, and even the vehicles we drive. Of course, the companies that make these things have a right to profit from their intellectual property, but we as consumers also have a right to be curious about how these things work and to understand what the software running on these devices is doing on our behalf.

join-hack-chatLuckily, what can be engineered can be reverse engineered, if you have the right tools and the skills to use them. It can be a challenge, but it’s one Matthew Alt has taken on plenty of times. We’ve seen him deep-dive into JTAG, look at serial wire debugging, and recently even try some glitching attacks. In fact, he even taught a HackadayU course on reverse engineering with Ghidra. And now he’ll drop by the Hack Chat to talk all about reverse engineering. Join us with your questions, your exploits, and your ideas on how to go where no hacker has gone before.

Our Hack Chats are live community events in the Hackaday.io Hack Chat group messaging. This week we’ll be sitting down on Wednesday, September 28 at 12:00 PM Pacific time. If time zones have you tied up, we have a handy time zone converter.

Probably The Simplest Radiation Detector You Already Own

Over the years we’ve featured quite a few radiatioactivity detectors, which usually include a Geiger-Muller tube, or perhaps a large-area photodiode. But in the event of radiation exposure from a nuclear attack, how does the man in the street gauge the exposure without owning a dedicated instrument? This was a question of note at the height of the Cold War, and it’s one that [Dr. Marshall Brucer] answered in a 1962 paper entitled “When Do You Leave A Fallout Shelter“. The full paper is behind a paywall but the part we’re interested in is on the freely available first page.

Dr. Brucer‘s detector is simplicity itself, and it relies on the erosion of a static electric charge by radiation. Should you rub a plastic comb in your hair it will accumulate enough charge to pick up a small piece of paper, and under normal background radiation the charge will ebb away such that it will drop the piece of paper after about 15 seconds. His calculation is that once the field reaches around 10 roentgens per hour it will be enough to erase the charge and drop the paper immediately. There’s a comtemporary newspaper report (Page 7, just to the left of the large advertisment) which tells the reader that since the exposure limit is 100 roentgens (one sievert), this test failing indicates that they have nine hours to create a better shelter. For obvious reasons we can’t test this at the Hackaday bench, but those of us who remember the days when such topics were a real concern will be searching for a handy comb anyway.

Thanks [Victor Matthew] for the tip.

Smart Pills Can Tell Your Doctor That You’ve Taken Them

We have many kinds of pills available these days to treat all kinds of different disorders. Of course, the problem with pills is that they don’t work if you don’t take them. Even Worse, for some medicines, missing a dose can cause all kinds of undesirable withdrawl effects and set back a patient’s treatment.

Smart pills aim to fix this problem with a simple monitoring solution that can tell when a patient has taken their medication. They’re now publicly available and authorized for use, so let’s look at how they work.

Continue reading “Smart Pills Can Tell Your Doctor That You’ve Taken Them”

So How Do You Make A Self-Destructing Flash Drive?

A self-destructing storage device that vaporizes its contents at the first sign of trouble would be an invaluable tool for many people, but good luck getting your hands on such a thing if you don’t work for a three-letter agency. Or at least, that’s what we would have said before [Walker] got on the case. He’s working on an open source self-destructing USB flash drive for journalists, security researchers, whistleblowers, or anyone else who really values their privacy.

When we previously covered this project in July, [Walker] had only planned to make the flash drive hide its contents unless you knew to wet your fingers before plugging it in. We admit it sounds a little weird, but as far as clandestine methods of activating something goes, it’s pretty clever. But based on the feedback he received, he decided to go all-in and make the USB drive literally trash itself should it be accessed by somebody who doesn’t know the secret.

An elegant weapon for a more civilized age.

But how exactly do you pull that off? Sure we’d love to see a small thermite charge or vial of acid packed in there, but obviously that’s not very practical. It needs to be safe to carry around, and just as importantly, unlikely to get you into even more trouble with whoever is searching through your belongings. To that end, [Walker] thinks he’s come up with an elegant solution.

The datasheet for his flash memory chip says the maximum voltage it can handle before releasing the Magic Smoke is a meager 4.6 V. So he figures running a voltage doubler on the nominal 5 V coming from a USB port should disable the chip nicely with a minimum of external drama. Will it be enough to prevent the data from being recovered forensically? We don’t know, but we’re eager to find out.

In the write-up, [Walker] takes readers through the circuit designs he’s come up so far, and shows off the source code that will run on the ATtiny25 to determine when it’s time to toast the flash. He says by the next post he should have the entire flash drive built and documented, so stay tuned.