Fail Of The Week: Epic 312 Weeks Of Fixing A Broken Project

If a hacker guardian angel exists, then we’re sure he or she was definitely AWOL for six long years from [Aaron Eiche]’s life as he worked on perfecting and making his Christmas Countdown clock. [Aaron] started this binary clock project in 2016, and only managed to make it work as expected in 2022 after a string of failures.

In case you’d like to check out his completed project first, then cut the chase and head over to his Github repository for his final, working version. The hardware is pretty straightforward, and not different from many similar projects that we’ve seen before. A microcontroller drives a set of LED’s to show the time remaining until Christmas Day in binary format. The LEDs show the number of days, hours, minutes and seconds until Christmas and it uses two buttons for adjustments and modes. An RTC section wasn’t included in the first version, but it appeared and disappeared along the six year journey, before finding a spot in the final version.

The value of this project doesn’t lie in the final version, but rather in the lessons other hackers, specially those still in the shallow end of the pool, can learn from [Aaron]’s mistakes. Thankfully, the clock ornament is not very expensive to build, so [Aaron] could persevere in improving it despite his annual facepalm moments.

Continue reading “Fail Of The Week: Epic 312 Weeks Of Fixing A Broken Project”

Hackaday Links Column Banner

Hackaday Links: February 12, 2023

So, maybe right now isn’t the best time to get into the high-altitude ballooning hobby? At least in the US, which with the downing of another — whatever? — over Alaska, seems to have taken a “Sidewinders first, threat identification later” approach to anything that floats by. The latest incident involved an aircraft of unknown type, described as “the size of a small car” — there’s that units problem again — that was operating over Prudhoe Bay off the northern coast of Alaska. The reason that was given for this one earning a Sidewinder was that it was operating much lower than the balloon from last week, only about 40,000 feet, which is well within the ceiling of commercial aviation. It was also over sea ice at the time of the shootdown, making the chance of bothering anyone besides a polar bear unlikely. We’re not taking any political position on this whole thing, but there certainly are engineering and technical aspects of these shootdowns that are pretty interesting, as well as the aforementioned potential for liability if your HAB goes astray. Nobody ever really benefits from having an international incident on their resume, after all.

Continue reading “Hackaday Links: February 12, 2023”

many revisions of the ball and socket robot

Practice Makes Perfect For This Ball And Socket Robot

Ball and socket joints are useful, but making a part slide over the surface of a sphere, held by magnets, requires a lot of fiddling to get right. We admire persistence and nailing all the details. [Matthew Finlay] has been doing just that with his ball and socket robot. He’s on version six, a testament to his desire to do the idea justice. Luckily for us, he’s documented each version as he went.

Version one, made from a DIY Christmas ornament ball, had no stability around the radial axis, and oscillated badly. Version two demonstrated the problem of centering the mechanism in the ball. Version 3 fixed this problem (it’s covered in the same video). Then version four fixed many of the assembly issues and replaced the servo controllers with an Arduino, but the ‘arm’ piece was too small and mechanically iffy.

Version five used a fabricated bearing. Matthew used airsoft rounds as the balls. Not a good idea. And assembly was a nightmare. So all this progress up to version six shows his improving technique.  Artists say ‘work on your process, not on your pieces’. He’s become much more analytic about what’s needed. He’s started measuring the strength of the robot, and handled issues like adding limit switches so it doesn’t crash at the limits of travel.

Fun build, reminds us of [Stephen Dufresne]’s BB-8.

Continue reading “Practice Makes Perfect For This Ball And Socket Robot”

This End Table Conceals A Close Encounter

If you’re of a Certain Age, perhaps you had a train set as a child. An oval of track, a loco, and some rolling stock; it matters not whether it was Thomas the Tank Engine or a large express train — they were at the time a pretty cool toy. Move forward a few decades, and model railways have become either super-expensive room-filler layouts, or have sunk low as novelty Christmas ornaments, so that the basic loop of track is in dire need of rescue. Perhaps [Peter Waldraff] can help, with a beautifully-constructed N gauge circular layout concealed in an end table. Even better, when you examine it closely, it becomes apparent that this is no ordinary train set, it’s a scene from Close Encounters Of The Third Kind.

This is a project of two equally well-made parts, the piece of furniture and the train. The former is entirely scratch-built, with a cylindrical outside made from carefully cut rings of plywood and a sliding riser mechanism in the centre with a concrete counterweight. Slide the cylinder upwards, and the layout is revealed — a scratch-built hill in the centre of the ring of track and the lit-up underside of the UFO above it. As the train goes round the track, it even triggers a set of crossing lights and sounds for extra realism. The full story can be seen in the video below the break, and is well worth a watch.

We’ve covered more than one concealed model railway layout in the past, and it comes as no surprise when browsing to find that [Peter]’s work has featured here before.

Continue reading “This End Table Conceals A Close Encounter”

A Relay-Based Pseudorandom Number Generator

There are a great variety of ways to build a random number generator, and similarly many ways to generate numbers that appear random, but in a pure mathematical sense generally aren’t. [Daniel Valuch] built a Christmas decoration that does the latter, displaying the results on an attractive flashing ornament.

The build relies on a 16-bit linear feedback shift register, or LFSR. The LFSR generates a stream of numbers, with each number dependent on the previous state of the register. Thus, the numbers generated are pseudorandom, not truly random, and depend on the initial seed value of the system. [Daniel] built the shift register using relays, which create a lovely clacking sound as the register operates, and LEDs, which glow depending on the values in the register.

The result is a cute Christmas ornament that blinks in a deterministic fashion, and has a great old-school look due to the exposed copper of the PCB and the retro LED colors used. The project also serves as a great way to learn about shift registers and basic relay logic, though the latter is rarely used these days for serious purposes. We’ve covered the topic before, too. Video after the break.

Continue reading “A Relay-Based Pseudorandom Number Generator”

Tiny Laser Cutter Puts Micro Steppers To Work

The influx of cheap laser cutters from China has been a boon to the maker movement, if at the cost of a lot of tinkering to just get the thing to work. So some people just prefer to roll their own, figuring that starting from scratch means you get exactly what you want. And apparently what [Mike Rankin] wanted was a really, really small laser cutter.

The ESP32 Burninator, as [Mike] lovingly calls his creation, is small enough to be in danger of being misplaced accidentally. The stage relies on tiny stepper-actuated linear drives, available on the cheap from AliExpress. The entire mechanical structure is two PCBs — a vertical piece that holds the ESP32, an OLED display, the X-axis motor, and the driver for the laser, which comes from an old DVD burner; a smaller bottom board holds the Y-axis and the stage. “Stage” is actually a rather grand term for the postage-stamp-sized working area of this cutter, but the video below shows that it does indeed cut black paper.

The cuts are a bit wonky, but this is surely to be expected given the running gear, and we like it regardless. It sort of reminds us of that resin 3D-printer small enough to fit in a Christmas ornament that [Sean Hodgins] did a while back. We’d suggest not trying to hang this on a tree, though.

Continue reading “Tiny Laser Cutter Puts Micro Steppers To Work”

Oreo Construction: Hiding Your Components Inside The PCB

In recent months, the ability to hide components inside a circuit board has become an item of interest. We could trace this to the burgeoning badgelife movement, where engineers create beautiful works of electronic art. We can also attribute this interest to Bloomberg’s Big Hack, where Jordan Robertson and Michael Riley asserted Apple was the target of Chinese spying using components embedded inside a motherboard. The Big Hack story had legs, but so far no evidence of this hack’s existence has come to light, and the companies and governments involved have all issued denials that anything like this exists.

That said, embedding components inside a PCB is an interesting topic of discussion, and thanks to the dropping prices of PCB fabrication (this entire project cost $15 for the circuit boards), it’s now possible for hobbyists to experiment with the technique.

But first, it’s important to define what ‘stuffing components inside a piece of fiberglass’ is actually called. My research keeps coming back to the term ’embedded components’ which is utterly ungooglable, and a truly terrible name because ’embedded’ means something else entirely. You cannot call a PCB fabrication technique ’embedded components’ and expect people to find it on the Internet. For lack of a better term, I’m calling this ‘Oreo construction’, because of my predilection towards ‘stuf’, and because it needs to be called something. We’re all calling it ‘Oreo construction’ now, because the stuf is in the middle. This is how you do it with standard PCB design tools and cheap Chinese board houses.

Continue reading “Oreo Construction: Hiding Your Components Inside The PCB”