Accessing A PBX Through Voice Channels

[Alessandro] is an unlucky VoIP PBX administrator that frequently has to deal with very, very dumb network policies. Often times, he’ll have to change something on his setup which requires him to go out to his client’s location, or ask a client to use Teamviewer so the appropriate change can be made from behind a firewall.

This isn’t the solution to the problem. It will, however, fix the problem. To get around these firewalls, [Alessandro] is using the voice channels he already has access to for changing configurations on his VoIP boxes.

The implementation of this uses the AX.25 amateur radio modules that can be found in just about every Linux distro. This, and an Alsa loopback device, allows [Alessandro] to access a terminal over a voice-only network. Is it a hackey kludge? Yep. Is it just a little bit dumb? So are the network policies that don’t allow [Alessandro] to do his job.

This build isn’t too dissimilar than a bunch of modems from the old BBS days, albeit with vastly more powerful software. [Alessandro] says you’re only going to get about 38400bps out of this setup, but it beats begging for help for remote access.

Mad Max Inspired Flamethrower Ukulele

The new Mad Max movie is getting a lot of buzz, and a few people are calling it a modern classic. There’s a flamethrower guitar in the movie, which means it’s time for cosplay accouterments. Our ‘ol buddy [Caleb] loves flamethrowers and poofers, so hacking together a Doof Warrior inspired flamethrowing ukulele was natural for him.

The fuel for this uke is a can of butane actuated with a caulking gun. This setup is actually pretty clever; by removing the locking tab on the caulking gun, butane is released when the gun’s trigger is squeezed, but stops when the trigger is released. The igniter is a simple grill igniter is used to light the gas.

[Caleb] is rather famous for his flamethrowing creations. His life-size fire-breathing piranha plant uses a similar setup to shoot fire.

Video below.

Continue reading “Mad Max Inspired Flamethrower Ukulele”

Hackaday Prize Entry: 3D Printed Parametric Motrs

If you’re building something that moves, chances are you’ll be using an electric motor. There are tens of thousands of different motors out there, each with their own properties, speeds, torque, and sizes. How do you pick the right motor? Most of the time it’s a highly educated guess, but [Solenoid] has a better idea: just 3D print a motor designed by a calculator that will give you the properties you need

This entry for The Hackaday Prize is just a web-based calculator for motor designs that takes torque, speed, size, or form factor as an input and spits out a complete motor design. Sure, you’ll need to wind coils on a 3D printed frame, but this calculator removes the need to calculate inductance, coil capacitance, and all the other bits needed to construct an efficient motor.

While actual products made in the millions will still be using off the shelf motors, this project is perfect for one-offs. If you want to motorize a telescope mount, this project will design a motor given the power and resolution per steps required. If you want to build a wind turbine, this calculator will put blades right on the outrunner of a brushless motor. It’s a great project, and something we can’t wait to see the results of.


The 2015 Hackaday Prize is sponsored by:

Crowdfunding Follies: Debunking The Batteriser

It’s not on Kickstarter yet, but this product is already making its media debut, with features in all the tech blogs, an astonishing amount of print outlets, and spouted from the gaping maws of easily impressed rubes the world over. What is it? It’s the Batteriser, a tiny metal contraption that clips over AA, C, and D cells that reclaims the power trapped inside every dead battery. Yes, every dead battery you’ve ever thrown away still has up to 80% of its power remaining. Sounds like complete hogwash, right? That’s because it is.

[Dave Jones] put together a great video on the how comes and why nots of the Batteriser, and while doing so gives a great tutorial for debunking a product, heavily inspired by [Carl Sagan]’s Baloney Detection Kit. The real  debunking starts by verifying any assumptions, and the biggest fault of the Batteriser campaign is claiming 80% of a battery’s power is unused. Lucky for us, [Dave] has tons of tools and graphs to demonstrate this is not the case.

To verify the assumption that battery-powered devices will brown out after using only 20% of a battery’s available power, [Dave] does the most logical thing and looks at the data sheets for a battery. After using 20% of available power, these datasheets claim these batteries should be around 1.3V. Do devices brown out at 1.3V? Hook it up to a programmable power supply and find out.

It turns out every battery-powered device [Dave] could find worked perfectly until around 1.1V. Yes, that’s only 0.3V difference from 1.4V claimed by the patent for the Batteriser, but because of the battery discharge curve, that means 80% of the power in a normal device is already being used up. The premise of the Batteriser is invalid, and [Dave] demonstrates it’s a complete scam.

If a through debunking of the Batteriser’s claims wasn’t enough, [Dave] goes on to explain how it may actually be dangerous. The positive terminal of a battery is also the metal can, while the negative terminal is just a tiny nib of metal seperated from the rest of the battery by a gasket. Since the Batteriser is made of metal and serves as the ground for the boost converter circuit, it’s very, very close to shorting through the branding and logo emblazoned on a mylar wrapping each battery is shrouded with. One tiny nick in this insulator, and you have a direct short across the battery. That’s going to turn to heat, and there’s a lot of energy in a D cell; a failure mode for the Batteriser is a fire. That’s just terrible product design.

Video below.

Continue reading “Crowdfunding Follies: Debunking The Batteriser”

Controlling A Rigol With Linux

The Rigol DS1052E is the de facto oscilloscope for any tinkerer’s bench. It’s cheap, it’s good enough, and it’s been around for a long time; with the new 1054 zed model out now, you might even be able to pick up a 1052E on the cheap.

[wd5gnr1] came up with a really interesting piece of software that allows a Linux system to control most of the functions on this popular scope. With just a USB cable, you can read and log all the measurement of the scope, save waveforms in CSV format, and send data to gnuplot and qtiplot.

Since the 1052E has been around for such a long time, there’s a bunch of software out there that takes advantage of the nifty USB port on the front of this scope. If you need a cheap spectrum analyzer, here ‘ya go, and tools for the .WFM files native to this scope even exist for Windows. [wd5gnr1] even says his tool can probably be ported to Windows, but ‘just use Linux.’

Beach Sign

LED Sign Brightens Up The Beach After Dark

[Warrior_Rocker’s] family bought a fancy new sign for their beach house. The sign has the word “BEACH” spelled vertically. It originally came with blue LEDs to light up each letter. The problem was that the LEDs had a narrow beam that would blind people on the other side of the room. Also, there was no way to change the color of the LEDs, which would increase the fun factor. That’s why [Warrior] decided to upgrade the sign with multi-colored LEDs.

After removing the cardboard backing of the sign, [Warrior] removed the original LEDs by gently tapping on a stick with a hammer. He decided to use WS2811 LED pixels to replace the original LEDs. These pixel modules support multiple colors and are individually addressable. This would allow for a wide variety of colors and animations. The pixels came covered in a weatherproof resin material. [Warrior] baked the resin with a heat gun until it became brittle. He was then able to remove it entirely using some pliers and a utility knife. Finally, the pixels were held in place with some hot glue.

Rather then build a remote control from scratch, [Warrior] found a compatible RF remote under ten dollars. The LED controller was removed from its housing and soldered to the string of LEDs. It was then hot glued to a piece of cardboard and placed into the sign’s original battery compartment. Check out the video below for a demonstration. Continue reading “LED Sign Brightens Up The Beach After Dark”

Automatic Print Ejector For All 3D Printers

Way back in 2010, Makerbot released the Automated Build Platform, a neat heated conveyor belt for the Cupcake or Thing-O-Matic that would spit parts out when a print was done. It’s a great invention if you need to produce 20 of something, and the perfect invention if you want to sit on a patent and not innovate anything ever.

You won’t need to wait until the year 2030 to get a device that automatically removes a print from a print bed. The folks at MatterHackers came up with an Automatic Print Ejector that removes a print in the most [Rube Goldberg]-ish way possible: with a boxing glove.

The Automatic Print Ejector is pretty much taken straight out of a [Buster Keaton] movie. It’s a series of scissor mechanisms with a 3D printed boxing glove on the end, driven by a stepper motor. When the print finishes, the boxing glove simply punches a print off the bed of a printer.

Does it work? It does, brilliantly. Check out the video below.

Continue reading “Automatic Print Ejector For All 3D Printers”