Sensor Net Makes Life Easier For Rice Farmers

Rice is cultivated all over the world in fields known as rice paddies and it is one of the most maintenance intensive crops to grow. The rice paddy itself requires a large part of that maintenance. It is flooded with water that must be kept at a constant level, just below the height that would keep rice seedlings from growing but high enough to drown any weeds that would compete with the rice stalks for nutrients. This technique is called continuous flooding and a big part of the job of a rice farmer is to inspect the rice paddy every day to make sure the water levels are normal and there are no cracks or holes that could lead to water leakage.

This process is labor intensive, and the technology in use hasn’t changed much over the centuries. Most of the rice farmers in my area are elders with the approximate age of 65-70 years. For these hard working people a little bit of technology can make a big difference in their lives. This is the idea behind TechRice.

Continue reading “Sensor Net Makes Life Easier For Rice Farmers”

The Worst CAD Package Ever Is Still Handy

A lot of great schematics wind up on the back of bar napkins or diner place mats. When inspiration strikes, you have to capture it, after all. Today, you are as likely to draw schematics on a computer and there are plenty of options for that; if you can install software your options are almost limitless. And if you have a modern Web browser, there are lots of good options that don’t even require an install.

But what about those times when you need a quick schematic to pop into a presentation? You are on some ancient conference room computer where you can’t install anything and it’s still running a browser that understands the <BLINK> tag? Try out the Klunky Schematic Editor. Your browser will need Javascript, but that’s about all. No HTML 5 or anything fancy.

Continue reading “The Worst CAD Package Ever Is Still Handy”

Radial Solenoid Engine Is Undeniably Cool

Radial engines are just plain cool – it’s inarguable that any tech that originated with early aviation is inherently awesome. But, what do you do when you want to build a radial engine in your dorm where a combustion engine would be inadvisable? For University of Washington students [Jeffrey Weng] and [Connor Lee] the answer was to power it with solenoids in place of the pistons.

The easiest way to approach a project like this would have been to use a microcontroller. A simple program running on an Arduino could have easily provided the timing to switch power to each solenoid in succession. [Jeffrey Weng] and [Connor Lee], however, took a much more interesting approach by controlling timing via a simple distributor. This works in the same way a spark distributor on a combustion engine would have worked, except it’s actually providing the power to actuate the solenoids instead of providing just an ignition spark.

Also impressive is what they were able to accomplish with such basic tools. Those of us who are lazy and have access to more expensive tools would have just 3D printed or CNC cut most of the parts. Either [Jeffrey Weng] and [Connor Lee] didn’t have access to these, or they wanted to increase their machining street cred, because they created all of the parts with simple tools like a band saw and drill press. We’ve seen some beautiful engine projects before, but what this build lacks in objective beauty it makes up for in ingenuity.

Continue reading “Radial Solenoid Engine Is Undeniably Cool”

Just Don’t Call It An Old Remote

[Hari Wiguna’s] father is ninety years young. He started having trouble pushing the buttons on his TV remote, so [Hari] decided to build a custom remote that just has the buttons his dad needs. Oh, and the buttons are big.

There are a few interesting things about this project. [Hari] wanted to maximize battery life, so he went through a good bit of effort to keep the processor asleep and minimize power consumption. The remote is programmable, but [Hari] didn’t have access to his dad’s remotes. His answer was elegant. He used his Android phone to mimic the required remotes and provided a way for the remote to learn from another remote (in this case, the phone).
Continue reading “Just Don’t Call It An Old Remote”

Harvard’s Microrobotic Lab Sinks RoboBees And Claims It Was On Purpose

What do you call tiny flying robots that undoubtedly emit a buzzing noise as they pass by? Mosquitoes are universally hated, as are wasps, so the logical name is RoboBees.

The Wyss Institute for Biologically Inspired Engineering at Harvard University has been cooking up these extremely impressive tiny robots in their Microrobotics lab. The swarms use piezoelectric actuators to produce the mechanical force to drive the wings, which can be independently controlled.This isn’t the first time we’ve looked in on the Robobees, but the most recent news revealed the ability to swim, and dive (term used generously) into water.

This may not sound like much, but previously the robots lacked the ability to break the surface tension of water. To sink, the wings need a coating of surfactant. Once submerged, the bots lack the ability to transition back from water to air. But we won’t be surprised to see that ability added as a feature while the scope of the project continues to creep. So yes, you can jump into water to escape bees but not to escape Robobees.

Diving isn’t the only wonder to behold. The ‘head’ of the RoboBee is utterly fascinating. It’s constructed by folding the PCB into a pyramid like structure, 4 sides of the head include a photo-transistor covered by a diffused lens which the bot uses for self positioning by sensing changes between the bright light of the sky and absence thereof below the horizon. This concept is taken directly from biological self-righting systems found on the head of most insects, however Harvard’s version has one more sensor than the stock 3 seen on insects. Take that, nature!

Continue reading “Harvard’s Microrobotic Lab Sinks RoboBees And Claims It Was On Purpose”

Maximizing A Solar Panel

Solar panels seem like simple devices: light in and electricity out, right? If you don’t care about efficiency, it might be that simple, but generally you do care about efficiency. If you are, say, charging a battery, you’d like to get every watt out of the panel. The problem is that the battery may not draw all the available current, basically leaving capacity on the table.

The solution is a technique called MPPT (Maximum Power Point Tracking). Despite sounding like a Microsoft presentation add on, MPPT uses a DC to DC converter to present a maximum load to the solar cell while providing the desired current and voltage to the load. MPPT is what [Abid Jamal] implemented to manage his solar charger.

Continue reading “Maximizing A Solar Panel”