Transforming EDF Backpack For A Speed Boost

Fighting against a tough headwind on your daily cycle can be a drag, but [Emiel] of The Practical Engineer, has a loud and bold solution. In the Dutch video after the break, he builds a transforming backpack with two electric ducted fans (EDFs), and takes to the bike paths.

An EDF moves a small volume of air at high velocity, which doesn’t make them great for low speed applications. But they’re nice and compact, and safer than large propellers. [Emiel] didn’t skimp on the rest of the hardware, with the motors attached to metal 3D printed arms, mounted on a machined aluminum steel plate.

The arms were printed courtesy of a sponsor, and created via generative design in Fusion 360 to make them both light and strong. A pair of large servos swing the arms up, while smaller servos rotate the motors into the horizontal position. The arm servos are controlled by an Arduino, and activated by a simple toggle switch attached to the backpack’s shoulder strap. A wireless remote similar to that of an electric skateboard is used to control the EDFs.

Fitted in a [Emiel]’s old backpack, the result looks somewhat innocuous (if you don’t look too closely) until it unfolds its hidden power—twin jets ready to blast away any pesky headwinds with the push of a button. It’s a fun solution that is sure to attract attention, and a great excuse to create heavy duty mechanics.

Continue reading “Transforming EDF Backpack For A Speed Boost”

Fixing A Tractor Dashboard From Over 10,000 Miles Away

[BuyItFixIt] is well known as a dab hand at, well, fixing things… and presumably buying them, too. Recently, they received an email calling for help of the former kind. One of their Australian viewers owned the same model of tractor, but with a dead digital dash. Thankfully, help was at hand!

The problem turned out to be due to a dead EEPROM on the Australian tractor. In contrast, [BuyItFixIt] had a perfectly working dashboard on their tractor. Thus, they set about disassembling the dash and dumping the EEPROM to try and sort the stricken farm implement. This posed some risk of ending up with two dead dashboards, necessitating a careful hand. In any case, the Case tractor had a fairly simple dash with a majority of through-hole components, making it fairly easy to work with. The Microchip 93LC46B chip was in a DIP package, and was removed with the aid of some low-melting point solder in short order. The contents of the EEPROM were then dumped to a file using a XGecu T48 programmer.

With the file sent off via email, the Australian tractor owner flashed a fresh EEPROM and reinstalled it in their cluster. They were greeted with success, with the only complication being that the hours reading on the cluster had to be corrected to match the previous reading on their machine.

It’s a fairly simple story of fixing an embedded system, but it’s an educational one. It also comes with a deeper dive into how the CASE dashboard works. Just about anyone with basic electronic skills could pull this off and save an entire tractor in the process. It’s great to see these jobs documented so that we can all learn useful basic skills like these. Video after the break.

Continue reading “Fixing A Tractor Dashboard From Over 10,000 Miles Away”

Resistor Color Code Clock Is A Bit Of Fun

Younger electronic engineers may see resistors with old-style color codes to display their values a little less than those from previous years, but if there’s a shibboleth among those who wield a soldering iron it’s probably something similar to instinctively saying “1K” when asked “Brown-black-red?”. Colors as numbers can be used outside resistors, for example in a clock, as [Det Builds Stuff] shows us with an ESP32 TFT dev board.

It’s fair to say that this is more of a software project than a hardware one, but that’s not necessarily a bad thing as he takes us though the process of creating a Network Time Protocol (NTP) capable clock with the dev board. He claims it may be the world’s first resistor clock, something we’d have to disagree with, but beside that we can see this could make a neat little desk ornament with a 3D printed case.

Oddly though, we’d expect older engineers to face the same steep learning curve as younger ones when reading it, because it’s easier to recognize visual sequences of numbers as preferred resistor values than it is to visually decode each one every time.

Continue reading “Resistor Color Code Clock Is A Bit Of Fun”

Electric Boomerang Does Laps

Boomerangs are known for their unique ability to circle back to the thrower, but what if you could harness this characteristic for powered for free flight? In a project that spins the traditional in a new direction, [RCLifeOn] electrifies a boomerang to make it fly laps.

The project started with several of the 3D printed boomerang designs floating around on the internet, and adding motor mounts to the tips. [RCLifeOn] is no stranger to RC adventures, and his stockpile of spare parts from previous flying and floating projects proved invaluable. He added motor mounts and mounted all the electronics, including a RC receiver for controlling the throttle,  but first iteration didn’t have enough lift, so the boomerang and motors were scaled up.

[RCLifeOn] launched the contraptions by letting them spin on the end of a stick until they achieve lift-off. The second iteration still couldn’t quite get into the air, but after increasing the blade angles using a heat gun it was flying laps around the field.

Although we’ve seen spinning drones that are controllable, it would be no small control systems challenge to make it completely RC controlled. In the meantime this project is a fun, if somewhat risky way to mix the traditional with modern tech.

Continue reading “Electric Boomerang Does Laps”

Satellite Provides Detailed Data On Antarctic Ice

Ever since the first satellites started imaging the Earth, scientists have been using the data gathered to learn more about our planet and improve the lives of its inhabitants. From weather forecasting to improving crop yields, satellites have been put to work in a wide array of tasks. The data they gather can go beyond imaging as well. A new Chinese satellite known as Fengyun-3E is using some novel approaches to monitor Antarctic sea ice in order to help scientists better understand the changing climate at the poles.

While it is equipped with a number of other sensors, one of the more intriguing is a piece of equipment called WindRad which uses radar to measure wind at various locations and altitudes based on how the radar waves bounce off of the atmosphere at various places.  Scientists have also been able to use this sensor to monitor sea ice, and can use the data gathered to distinguish new sea ice from ice which is many years old, allowing them to better understand ice formation and loss at the poles. It’s also the first weather satellite to be placed in an early morning orbit, allowing it to use the long shadows cast by the sun on objects on Earth’s surface to gather more information than a satellite in other orbits might be able to.

With plenty of other imaging sensors on board and a polar orbit, it has other missions beyond monitoring sea ice. But the data that it gathers around Antarctica should give scientists more information to improve climate models and understand the behavior of sea ice at a deeper level. Weather data from satellites like these isn’t always confined to academia, though. Plenty of weather satellites broadcast their maps and data unencrypted on radio bands that anyone can access.

An Alternative Orientation For 3D Printed Enclosures

When it comes to 3D printing, the orientation of your print can have a significant impact on strength, aesthetics, and functionality or ease of printing. The folks at Slant 3D have found that printing enclosures at a 45° provides an excellent balance of these properties, with some added advantages for high volume printing. The trick is to prevent the part from falling over when balance on a edge, but in the video after the break [Gabe Bentz]  demonstrate Slant 3D’s solution of minimalist custom supports.

The traditional vertical or horizontal orientations come with drawbacks like excessive post-processing and weak layer alignment. Printing at 45° reduces waste and strengthens the end product by aligning the layer lines in a way that resists splitting across common stress points. When scaling up production, this orientation comes with the added advantage of minimal bed contact area, allowing the printer to auto-eject the part by pushing it off the bed with print head.

Continue reading “An Alternative Orientation For 3D Printed Enclosures”

A white male in a green shirt sitting next to a tall rectangular robot made of green and black components with an aluminum frame. In front of him are a variety of components from several windshield wiper motor assemblies. Casings, gearboxes, and the like are strewn across the wooden table.

A Wiper Motor 101

Need a powerful electric motor on the cheap? [Daniel Simu] and his friend [Werner] show us the ins and outs of using windshield wiper motors.

Through many examples and disassembled components, the duo walk us through some of the potential uses of wiper motors to power a project. Some of the nuggets we get are the linear relationship of torque to current (10-15A max) and speed to voltage (12-15V DC) on these units, and some of the ways the wiring in these motors is a little different than a simple two wire DC motor.

They also discuss some of their favorite ways to control the motors ranging from a light switch to an Arduino. They even mention how to turn one into a big servo thanks to a project on Hackaday.io and a few modifications of their own. [Simu] also discusses some of the drawbacks of wiper motors, the most evident being that these motors use nylon gears which are prone to stripping or failing in other ways when subjected to high torque conditions for too long.

If you recognize [Simu], it may be from his robotic acrobat built with wiper motors. Want to see some more wiper motor hacks? How about a 3D scanner or making sure your wipers always keep the beat?

Continue reading “A Wiper Motor 101”