How Framework Laptop Broke The Hacker Ceiling

We’ve been keeping an eye on the Framework laptop over the past two years – back in 2021, they announced a vision for a repairable and hacker-friendly laptop based on the x86 architecture. They’re not claiming to be either open-source or libre hardware, but despite that, they have very much delivered on repairability and fostered a hacker community around the laptop, while sticking to pretty ambitious standards for building upgradable hardware that lasts.

I’ve long had a passion for laptop hardware, and when Hackaday covered Framework announcing the motherboards-for-makers program, I submitted my application, then dove into the ecosystem and started poking at the hardware internals every now and then. A year has passed since then, and I’ve been using a Framework as a daily driver, reading the forums on the regular, hanging out in the Discord server, and even developed a few Framework accessories along the way. I’d like to talk about what I’ve seen unfold in this ecosystem, both from Framework and the hackers that joined their effort, because I feel like we have something to learn from it.

If you have a hacker mindset, you might be wondering – just how much is there to hack on? And, if you have a business mindset, you might be wondering – how much can a consumer-oriented tech company achieve by creating a hacker-friendly environment? Today, I’d like to give you some insights and show cool things I’ve seen happen as an involved observer, as well as highlight the path that Framework is embarking upon with its new Framework 16.

Continue reading “How Framework Laptop Broke The Hacker Ceiling”

The UK Online Safety Bill Becomes Law, What Does It Mean?

We’ve previously reported from the UK about the Online Safety Bill, a piece of internet safety legislation that contains several concerning provisions relating to online privacy and encryption. UK laws enter the statutes by royal assent after being approved by Parliament, so with the signature of the King, it has now become the law of the land as the Online Safety Act 2023. Now that it’s beyond amendment, it’s time to take stock for a minute: what does it mean for internet users, both in the UK and beyond its shores? Continue reading “The UK Online Safety Bill Becomes Law, What Does It Mean?”

Brick-Laying Machine Builds Without Mortar

Move over, 3D printed houses. There’s a new game in town, and it is able to use standard concrete blocks to build the walls of a house in just one day.

Australian company FBR’s Hadrian X is a tablet-controlled system that follows CAD models to lay the blocks one by one. As you can see in the video after the break, the blocks are laid so quickly that there’s no time for mortar, so they dip the bottom of each block in construction adhesive instead. In the second video after the break, you can watch Hadrian-X build a curved wall.

There are several things to consider when it comes to outdoor robots, such as wind and unwanted vibration. In order to correct for these nuisances, FBR came up with Dynamic Stabilisation Technology (DST). While we don’t have a lot of details on DST, the company calls it “a highly accurate system that continuously adjusts the position of a robot’s end effector to ensure it is always held with stability at the correct point in 3D space.”

Curious about printed housing? Here’s the current-ish state of affairs.

Continue reading “Brick-Laying Machine Builds Without Mortar”

This Week In Security: 1Password, Polyglots, And Roundcube

This week we got news of a security incident at 1Password, and we’re certain we aren’t the only ones hoping it’s not a repeat of what happened at LastPass. 1Password has released a PDF report on the incident, and while there are a few potentially worrying details, put into context it doesn’t look too bad.

The first sign that something might be amiss was an email from Okta on September 29th — a report of the current list of account administrators. Okta provides authentication and Single Sign-On (SSO) capabilities, and 1Password uses those services to manage user accounts and authentication. The fact that this report was generated without anyone from 1Password requesting it was a sign of potential problems.

And here’s the point where a 1Password employee was paying attention and saved the day, by alerting the security team to the unrequested report. That employee had been working with Okta support, and sent a browser session snapshot for Okta to troubleshoot. That data includes session cookies, and it was determined that someone unauthorized managed to access the snapshot and hijack the session, Firesheep style.

Okta logs seemed to indicate that the snapshot hadn’t been accessed, and there weren’t any records of other Okta customers being breached in this way. This pointed at the employee laptop. The report states that it has been taken offline, which is good. Any time you suspect malicious action on a company machine, the right answer is power it off right away, and start the investigation.

And here’s the one part of the story that gives some pause. Someone from 1Password responded to the possible incident by scanning the laptop with the free edition of Malwarebytes. Now don’t get us wrong, Malwarebytes is a great product for finding and cleaning the sort of garden-variety malware we tend to find on family members’ computers. The on-demand scanning of Malwarebytes free just isn’t designed for detecting bespoke malicious tools like a password management company should expect to be faced with.

But that turns out to be a bit of a moot point, as the real root cause was a compromised account in the Okta customer support system, as revealed on the 20th. The Okta report talks about stolen credentials, which raises a real question about why Okta support accounts aren’t all using two-factor authentication.

Continue reading “This Week In Security: 1Password, Polyglots, And Roundcube”

Adobe Scientist Cuts A Dash With LCD Shifting Dress

Adobe research scientist [Christine Dierk] showed off an interesting new project at the Adobe Max conference: Project Primrose, a dress covered with a series of liquid crystal panels that could react to movement, changing the design of the dress. Now, Adobe has released a paper showing some of the technical details of the process.

The paper is from the User Interface & Software (UIST) conference in 2022, so the examples it uses are older: it discusses a canvas and handbag. The dress uses the same technology, though, draped over a scientist rather than a frame. If you can’t access the version from UIST, [Dierk] has a free version here.

The dress uses Polymer-dispersed Liquid Crystal (PDLC) panels from the wonderfully named Shanghai HO HO Industry Co and is designed for use in windows and doors for privacy. It uses an Indium Tin oxide-coated PET film that is opaque by default but becomes transparent when a voltage difference is applied across the material.

These panels are shaped to a hexagonal shape, then wired together with flexible PCBs in a daisy chain. Interestingly, [Dierk] found that the smaller the panels were made, the lower the voltage was required to trigger them. For their canvas example, they dropped the voltage to a much safer -15V to 15V levels to trigger the two states, which is much safer for a wearable device.

The panels are also not completely transparent when triggered: the paper describes them as having a “soft ivory” look when they are overlaying a reflective material. Greyscales can also be made using Pulse Coded Modulation (PCM) to vary the panel’s transparency. Driving the panels at 3.2KHz, they created 64 shades of grey.

The main controller is a custom PCB with a Teensy 4.1 and a BlueFruit LE SPI module. The power comes from two 14.8V LiPo batteries, with converters to power the chips and switch modules so the Teensy can switch the -15 and +15V levels for the panels directly from each battery.

The array is made from modules, each with four panels connected to a controller PCB, which has several Analog Signal Device (ASD) ADG1414 chips. These receive the signals from the bus with switch registers to switch the panels individually.

Rather cleverly, [Dierk] uses the bus that daisy chains the modules together to deliver both power and the bus signal that controls the panels, using the -15 and +15V levels modulated with a 50Hz square wave to create the bus signal and power the panels at the same time. That’s a neat hack that reduces the complexity of the modules significantly.

The Teensy 4.1 controls the whole system and can use its IMU to sense movement and change the pattern accordingly. You don’t get to see the system’s electronics in the dress video, but they claim that the canvas example took just 0.58 Watts to drive, so the dress probably only needs a few watts.

It is a fascinating build (and a rather cute dress), and has a lot of potential. What would you do with this?

Continue reading “Adobe Scientist Cuts A Dash With LCD Shifting Dress”

Spinning Up A New Laundry Monitor

For all that modern washers and dryers do, they don’t let you know when they’re finished. Or they do, but it’s only a short victory song that plays once and can be easy to miss. What most of us need is a gentle reminder that there’s damp laundry festering in the washer, or fresh laundry in the dryer getting wrinkly.

This laundry monitor from [Sparks and Code] is version 2.0. The first version was working fine, but it was based on vibration (or lack thereof). Fast forward a few years, and [Sparks and Code] got a modern pair that’s so finely tuned, it doesn’t produce enough vibration to register. Back to the drawing board [Sparks and Code] went, and eventually came up with version 2.0.

Now, [Sparks and Code] is detecting whether the machines are on using a pair of split-core transformers to monitor power at the breaker box. With these, you just run the wire through the hole, and it gives the relative mV value going through the wire on a 3.5mm cable. Those cables are connected to an ESP32 inside the 3D-printed box, which is mounted above the cabinet door. Since [Sparks and Code] already has home assistants all over the house, it was easy to integrate and have them all play the message ‘please flip the laundry’.

Once this project was all buttoned up, they thought of one issue — the self-cleaning cycle. Since it takes about four hours, they like to run it overnight. You can see the problem here — no one wants to hear Alexa at 3AM. Fortunately, [Sparks and Code] was able to adjust the Python script to ignore these events. Be sure to check out the build video after the break.

If only the dryer could empty itself and fold the clothes. Oh wait, there’s a robot for that.

Continue reading “Spinning Up A New Laundry Monitor”

Commodore Datassette Does Barbershop Quartet

Okay, now this is just plain fun. [Linus Ã…kesson] modified a Commodore Datassette player to move its “mouth” and, when quadrupled, sing a clever barbershop tune called “Sweet End of Line” that’s a play on “Sweet Adeline“, a top hit from the summer of 1903.

What? Let us explain. Those with Commodore 64s who lacked disk drives often had the Datassette — a magnetic storage tape device, or cassette player used to load and save files. But they couldn’t open the doors themselves with a keypress, and they certainly couldn’t sing barbershop.

First off, [Linus] redirected the current that drives the magnetizing tape head through a speaker coil instead. Then he replaced the motor with a servo that opens the lid from the inside. A simple rubber band pulls the lid back shut. Software-wise, [Linus] is using a timer interrupt to run code that toggles the output signal, the rate of which determines the pitch.

Don’t worry — all of these modifications are reversible, so no Datassettes were truly harmed in the making. Don’t forget to check out the brief build/demo video after the break.

We’ve seen our share of tape players, but we’d never seen one with a crank until recently.

Continue reading “Commodore Datassette Does Barbershop Quartet”