British Hospital Blasts Through Waiting Lists By Slashing Surgeon Downtime

It feels like it doesn’t matter where you go, health systems are struggling. In the US, just about any procedure is super expensive. In the UK and Australia, waiting lists extend far into the future and patients are left sitting in ambulances as hospitals lack capacity. In France, staff shortages rage furiously, frustrating operations.

It might seem like hope is fruitless and there is little that can be done. But amidst this horrid backdrop, one London hospital is finding some serious gains with some neat optimizations to the way it handles surgery, as The Times reports.

Continue reading “British Hospital Blasts Through Waiting Lists By Slashing Surgeon Downtime”

CH32 RISC-V MCUs Get Official Arduino Support

Like many of you, we’ve been keeping a close eye on the CH32 family of RISC-V microcontrollers from WCH Electronics. You can get the CH32V003, featuring 2 kB RAM and 16 kB of flash for under fifteen cents, and the higher-end models include impressive features like onboard Ethernet. But while the hardware is definitely interesting, the software side of things has been a little rocky compared to what we’ve come to expect from modern MCUs.

Things should start looking up a bit though with the release of an Arduino core for the CH32 direct from WCH themselves. It’s been tested on Windows, Linux, and Mac, and supports the CH32V00x, CH32V10x, CH32V20x, CH32V30x, and CH32X035 chips. Getting it installed is as easy as adding the URL to the Arduino IDE’s Boards Manager interface, though as the video below shows, running it on Linux does require an extra step or two.

So far, we’ve seen several projects, like this temperature sensor or this holiday gizmo that use [cnlohr]’s open-source toolchain. But there’s no question that plenty of hobbyists out there feel more comfortable in the Arduino environment, and if those folks are now able to pick up a CH32 and do something cool, that means more people jumping on board, more libraries developed, more demo code written…you get the idea.

Just like the ESP8266’s popularity exploded when it was added to the Arduino IDE, we’ve got high hopes for the CH32 family in the coming months.

Continue reading “CH32 RISC-V MCUs Get Official Arduino Support”

Current-Based Side-Channel Attacks, Two Ways

Funny things can happen when a security researcher and an electronics engineer specializing in high-speed circuits get together. At least they did when [Limpkin] met [Roman], which resulted in two interesting hardware solutions for side-channel attacks.

As [Limpkin] relates it, the tale began when he shared an office with [Roman Korkikian], a security researcher looking into current-based attacks on the crypto engine inside ESP32s. The idea goes that by monitoring the current consumption of the processor during cryptographic operations, you can derive enough data to figure out how it works. It’s difficult to tease a useful signal from the noise, though, and [Roman]’s setup with long wire runs and a noisy current probe wasn’t helping at all. So [Limpkin] decided to pitch in.

The first board he designed was based on a balun, which he used to isolate the device under test from the amplification stage. He found a 1:8 balun, normally used to match impedances in RF circuits, and used its primary as a shunt resistance between the power supply — a CR1220 coin cell — and the DUT. The amplifier stage is a pair of low-noise RF amps; a variable attenuator was added between the amp stages on a second version of the board.

Board number two took a different tack; rather than use a balun, [Limpkin] chose a simple shunt resistor with a few twists. To measure the low-current signal on top of the ESP32’s baseline draw would require such a large shunt resistor that the microcontroller wouldn’t even boot, so he instead used an OPA855 wideband low-noise op-amp as an amplified shunt. The output of that stage goes through the same variable attenuator as the first board, and then to another OPA855 gain stage. The board is entirely battery-powered, relying on nice, quiet 18650s to power both the DUT and the shunt.

How well does it work? We’ll let you watch the talk below and make up your own mind, but since they’ve used these simple circuits to break a range of different chips, we’d say this approach a winner.

Continue reading “Current-Based Side-Channel Attacks, Two Ways”

The Pi Pico replacement board in question, assembled, held diagonally in some type of holder

ProPico For Your Pro Pico Needs

Ever feel like the Pi Pico board could be doing way more given its footprint? Does it bother you that the RP2040’s ADC quality is even further decreased because of the noisy onboard switching regulator? Miffed about decisions like the MicroUSB socket, the 2MB flash, or lack of the reset button? [Dmytro] brings us an open-source Pi Pico design, sporting the same RP2040 and a fully compatible footprint, but adding a number of improvements to its surroundings.

There’s a good few additions, all of them hacker-friendly – [Dmytro] adds comfortably-spaced reset and boot buttons, a USB-C socket, a dedicated low-noise voltage reference for the ADC, one more LED, and an I2C EEPROM footprint socket that is compatible with FRAM chips. Everything worth preserving is preserved – the pinout stays the same, including the SWD connector, which now sports an extra RESET pin. The bottom side USB testpoints remain, with only the four testpoints changed for more useful signals. Last but not least, the switching regulator is replaced by the venerable 1117 – you lose the ability to power your Pico from two AAs, and the capacitor series resistor requirement isn’t great, but you can easily put one of the drop-in 1117 replacement regulators on there.

What’s great is that the design is fully open-source, with KiCad files available. Want to design your own Pi Pico footprint board, improve upon this one even further, or maybe make a more tailored one? Treat yourself to the GitHub repository! There’s also a pinout diagram and a KiCanvas schematic for all your tinkering needs. We’ve covered drop-in replacements for classic drawer-inhabiting parts like the Pi Zero, for the 7805 (twice!), the 6502 CPU, and even for the DE9 serial port connector. No matter the purpose, they’re always a joy to see.

Cessna 208B Grand Caravan Flies Under Remote Control

Reliable Robotics has been working on Unmanned Aircraft Systems (UAS) since its founding in 2017, with a number of demonstrations for the FAA so far as it works towards getting the technology licensed. Most recently, it flew an unmanned Cessna 208B Grand Caravan with a pilot in a ground-based control center. This comes a few years after the company flew a Cessna Skyhawk 172 in a similar manner, demonstrating the functionality of its systems in a fairly small airplane.

Because the pilot is not in the cockpit, the aircraft needs to be equipped with not only the remote controls and camera systems, but also with automation to handle taxiing, take-off, and landings, which is demonstrated in the in-cockpit video provided by Reliable Robotics (also embedded below). Another large part of the automation is dealing with loss of remote control signal (LC2L). Initially this system will be offered only as a retrofit kit for the 9-13 seater, single-prop Cessna 208B, but Reliable Robotics claims that the system is aircraft-agnostic.

Reliable Robotics is focused on remotely piloted cargo flights, as it would save pilots from the stress of constantly traveling and hectic schedules. In addition, the potential loss of a cargo plane would be far less dramatic than an aircraft carrying passengers. That doesn’t mean passenger airplanes won’t eventually use a remote control system like this, but the certification process for something on the order of even a twin turbo-prop Dash 8 passenger plane is likely to be much more involved.

Continue reading “Cessna 208B Grand Caravan Flies Under Remote Control”

FLOSS Weekly Episode 764: You Have To Be Pretty Cynical

This week Jonathan Bennett and Katherine Druckman talk with benny Vasquez, chair of AlmaLinux, all about the weird road we’ve been on with Enterprise Linux distributions, and how that’s landed us here, where we have AlmaLinux, Rocky Linux, and multiple other Red Hat downstream distros. What’s the difference between those projects, and why does it matter?

Projects need more than just developers. How do you keep members doing documentation, bug hunting, outreach, and even graphic design plugged in and feeling like part of the team? How do you walk the narrow line between the different directions a project can drift, setting up your community for long term success? And where’s the most surprising place benny has found AlmaLinux running? And why is benny’s first name never capitalized? Give this week’s show a listen to find out!

Continue reading “FLOSS Weekly Episode 764: You Have To Be Pretty Cynical”

The controller after the rebuild, looking just like the stock controller but with an external antenna attached

An Extensive Walkthrough On Building Your Own KSP Controller

Having a game-tailored controller is a level-up in more ways than one, letting you perform in-game actions quickly and intuitively, instead of trying to map your actions to a clunky combination of keyboard and mouse movements. [abzman] took the Pelco KBD300A, a DVR-intended camera controller panel with a joystick, reverse-engineered it, and then rebuilt it into a Kerbal Space Program controller. What’s more, he documented every detail along the way!

The write-up is so extensive, it’s four separate posts — all of them worth reading without a doubt. In the first post, he describes the original hardware, the process of reverse-engineering it, and a few tips for your own RE journeys. Next, he covers about making his own board, showing all the small decisions he’s had to make, with plenty of KiCad screenshots. If you are on the lookout for designing such a board, there’s plenty to learn!

The original hardware didn’t go down without a fight — the third post talks about taming the seven-segment displays, the onboard joystick, and fighting with the key matrix wired in exactly the way you wouldn’t want. In the end, he shows us how you could tie a controller easily into Kerbal Space Program.

One more piece of hardware liberated, one more win for the hacker world. Whether it’s a Macintosh SE, a classic ThinkPad, or even a generic rotary tool, these upgrades are always a joy to see. If you wanted to learn to do such an upgrade yourself, here’s us showing how you can pull this off with a classic Sony Vaio!