IWings For The New Apple Power Adaptor

You might remember the old Apple MagSafe adaptor with the cute little fold out “wings” that served not only as a pragmatic cable management tool, but in our experience also expedited the inevitable and frayed end of your charger. Apple seems to have remedied the latter by opting for removable USB-C cables in latest designs, but the complete omission of a pop-out cable spooling contraption is problematic.

[Eric], an industrial designer, took it upon himself to design a 3D printed add on for the new generation of chargers. His video is certainty one of those satisfying accounts, where the whole process from conceptional sketch to a working Hack is neatly self-contained in a single video.  The design is largely based off the original version, implemented in PLA together with piano wire serving as the hinge pin. We think this is a very good example of how 3D printers can be used to personalise and tweak commercial products to suite particular needs.

If you are looking for a more general 3D printed cable management tool, check out this geared cable winder we featured earlier.

Robotic Biped Walks On Inverse Kinematics

Robotics projects are always a favorite for hackers. Being able to almost literally bring your project to life evokes a special kind of joy that really drives our wildest imaginations. We imagine this is one of the inspirations for the boom in interactive technologies that are flooding the market these days. Well, [Technovation] had the same thought and decided to build a fully articulated robotic biped.

Each leg has pivot points at the foot, knee, and hip, mimicking the articulation of the human leg. To control the robot’s movements, [Technovation] uses inverse kinematics, a method of calculating join movements rather than explicitly programming them. The user inputs the end coordinates of each foot, as opposed to each individual joint angle, and a special function outputs the joint angles necessary to reach each end coordinate. This part of the software is well commented and worth your time to dig into.

In case you want to change the height of the robot or its stride length, [Technovation] provides a few global constants in the firmware that will automatically adjust the calculations to fit the new robot’s dimensions. Of all the various aspects of this project, the detailed write-up impressed us the most. The robot was designed in Fusion 360 and the parts were 3D printed allowing for maximum design flexibility for the next hacker.

Maybe [Technovation’s] biped will help resurrect the social robot craze. Until then, happy hacking.

Continue reading “Robotic Biped Walks On Inverse Kinematics”

3D Printing Damascus-like Steel

Recreating Damascus steel remains a holy grail of materials science. The exact process and alloys used are long ago lost to time. At best, modern steelworking methods are able to produce a rough visual simulacra of sorts that many still consider to be pretty cool looking. Taking a more serious bent at materials science than your average knifemaker, a group of scientists at the Max Planck institute have been working to create a material with similar properties through 3D printing.

The technology used is based on the laser sintering of metal powders. In this case, the powder consists of a mixture of iron, nickel and titanium. The team found that by varying the exact settings of the laser sintering process on a layer-by-layer basis, they could create different microstructures throughout a single part. This allows the creation of parts that are ductile, while remaining hard enough to be sharpened – a property which is useful in edged weapons like swords.

While the process is nothing like that used by smiths in Damascus working with Wootz steel, the general idea of a metal material with varying properties throughout remains the same. For those eager to get into old-school metalwork, consider our articles on blacksmithing. For those interested in materials research, head to a good university. Or, better yet – do both!

[Thanks to Itay for the tip, via New Atlas]

Towards A 3D-Printed Neutrino Detector

Additive manufacturing techniques like fused deposition modeling, aka 3D printing, are often used for rapid prototyping. Another advantage is that it can create shapes that are too complex to be made with traditional manufacturing like CNC milling. Now, 3D printing has even found its way into particle physics as an international collaboration led by a group from CERN is developing a new plastic scintillator production technique that involves additive manufacturing.

A scintillator is a fluorescent material that can be used for particle detection through the flashes of light created by ionizing radiation. Plastic scintillators can be made by adding luminophores to a transparent polymer such as polystyrene and are usually produced by conventional techniques like injection molding.

Continue reading “Towards A 3D-Printed Neutrino Detector”

Make Your Own Pet Fire Breathing Dragon

[Jorvon Moss] a.k.a. [Odd_Jayy] is known as a maker of “companion robots” which he carriers perched on top of his shoulders. (I don’t know about you, but we’re getting some pretty strong Ash and Pikachu vibes.)

In one of his recent builds, he decided to give his companion bot a bit of sizzle. His Widget Dragon Companion Bot is an impressive 3D printed build, divided into a surprisingly few parts. The robot is controlled using an Adafruit Crickit, marketed specifically for robotics projects, and is easily programmed using the increasingly popular Microsoft MakeCode.

With a few servos, [Odd Jay] was able to animate his bot giving it more of an “alive” feel. Finally, he added a vape pen to give the dragon some pyrotechnic effects.

This is just the kind of energy we love to see here at Hackaday. While you’re around, take a look at some of [Odd_Jayy’s] other robot projects and head over to his Instagram page to see more real-time project updates.

3D Printed DIY Neuralyzer

We agree with you. We can never have enough cosplay hacks. And the ones that include some electronics element definitely have a special place in our hearts. That’s why when we ran across [Maddogg0’s] 3D printed Neuralyzer on Instructables, we knew we had to share.

You may recall [How to make’s] DIY Neuralyzer that we featured a few weeks ago which required more of a metal-working approach. [Maddogg0’s] design might be a bit more convenient for those of you that have a 3D printer, but no machine shop.

We love the elegant simplicity of [Maddogg0’s] design. The entire enclosure is printed in two halves that are held together by magnets. One half of the enclosure houses a single coin cell battery and a tiny circuit board for holding the LEDs in place, really giving the Neuralyzer some shine. In true maker fashion, [Maddogg0] released the necessary design files on TinkerCAD so anyone can reuse, remix, and reshare.

Whichever design you fancy, [Maddogg0’s] or [How to make’s], be careful not to point the Neuralyzer at yourself and always remember to wear your sunglasses!

 

 

Print-in-Place Helping Hand Grabs A Hold Of Your PCB

We probably don’t have to promote the benefits of a third hand or PCB holders in general, such is their obvious utility. While you can arrange some boxes and pile up tools on your bench to get a similar result, a good grip and flexibility to move the PCB around during soldering or performing any other work on it makes life just so much easier. Thanks to 3D printing there have been plenty of inspiring designs that go beyond the usual clumsy-yet-cheap croc clip version of it, and [SunShine] adds one on to the list with his spring-loaded print-in-place PCB gripper, demonstrated in this video and available on Thingiverse.

The gripping part’s design is based on a spring-loaded box [SunShine] created a little while back — which you can read more about in his Instructable. The holder itself comes in two varieties: one that brings its own stand, and one that has a GoPro mount. The first one is really more to show off the design, and while the gripping part is fully functional, it might not perform too well with heavier boards and easily tip over. Sure, a bigger bottom or mounting it to something more sturdy will fix that, but so will the GoPro-mount version, which also adds the whole flexibility aspect.

If you do prefer something standing more sturdily on your desk though, have a look at the concrete-mounted solder squid from earlier this year. And if you’re interested in more of [SunShine]’s work, check out his 3D-printed brush collection.

Continue reading “Print-in-Place Helping Hand Grabs A Hold Of Your PCB”