3D Printed Computer Case Brings Sexy Back

We know what you’re thinking – case modding is so 2004. You can forget all the silly paint jobs, windows, and lighted spinning fans that’s you’ve seen in the past. That all seems like child’s play compared to what [Complx] has created over on the overclock.net forum.

Using a mixture of 3D-printed plastic corners and a laser-cut acrylic top, bottom and sides, [Complx] was able to create a very pleasing design. He didn’t have access to a 3D printer large enough that would make the parts, though, so he decided to outsource that task. His first set of parts were printed on a Makerbot Replicator, but came out too coarse and so he set out to find a better printing method. After getting quotes of $2000 or more, he was about to call it quits when he found someone with Stratasys Fotus 250 who was willing to work with him on the price, but still provide a quality print.

The guts of the machine aren’t too shabby either. We know everyone loves a parts list so here you go:  It’s an ASUS Z97I-Plus and a i7-4790K, running a GTX 970 with a 600 Watt power supply, 8GB RAM and a couple of SSD drives.

We have to commend [Complx] on his documentation, photos and videos.  It really makes this build shine. You can watch an 3d animation of the build after the break.

Continue reading “3D Printed Computer Case Brings Sexy Back”

Art For Planespotters

We don’t know art, but we know what we like. And this gizmo by [Johan Kanflo] is right up our alley.

First, [Johan] gutted an old Macintosh Classic computer and stuffed a Raspberry Pi inside. Now this is not really a new idea, but [Johan] did a very nice job with the monitor and his attention to detail shows in the rebuilt floppy-drive eject mechanism. He gives it back that characteristic “schlurp” noise.

Then he outfitted the Raspberry Pi with an RTL dongle running dump1090 software to listen to the ADS-B radio signals. The data extracted from the SDR is piped off to an MQTT server with all sorts of data about the airplanes overhead. Another script subscribes to the MQTT topic and figures out which is the closest and runs an image search for the plane type in question, publishing the results back to another MQTT topic. One final script subscribes to this last topic and displays the relevant images on the screen. Pshwew!

The end result is a Macintosh Classic that’s continually updated with whatever planes are closest to being overhead. We’re not at all sure if this is fine art, or part of the useful arts, or maybe even none of the above. But we really like the nice case job and think that using MQTT as a back-end for coordinating multiple concurrent Python scripts (on the same computer) is pretty cool.

Engauge Makes Graph Thieving A Cinch

We’ve seen ’em before: the charts and graphs in poorly photocopied ’80s datasheets, ancient research papers, or even our college prof’s chalkboard chicken scratch. Sadly, this marvelously plotted data is locked away in a poorly rendered png or textbook graphic. Fortunately, a team of programmers have come the rescue to give us the proper thieving tool to lift that data directly from the source itself, and that tool is Engauge.

Engauge is an open source software tool that enables to convert pictures of plots into the numerical representation of their data. While some of us might still be tracing graphs by hand, Engauge enables us to simply define reference points on the graph, and a clever image-processing algorithm extracts the curve for us automatically! Sure, there’s a little fine-tuning to determine what counts as data, but the net result is an all-in-one software tool that eats pictures and produces data–no intermediate steps required!

Engauge has been helping scientists and engineers preserve ancient data logs for years now, but it’s a tool that’s still fresh today when we’re recording from an analog o’scope or lifting those xs and ys off a textbook. In a world that’s increasingly digital, we’ve got the Engague developers to thank for arming us with the right tool for the job. All that said, If graph-thieving isn’t your thing, try spline-thieving to go from camera to CAD.

Engauge is a little lacking in the demo-video department, but we dug up a quickie on YouTube.

Thanks for the tip, [Jason]!

Continue reading “Engauge Makes Graph Thieving A Cinch”

Remote PC Power Control Thwarts Button Pushers

Pervasive connectivity is a mixed blessing at best, especially when it creates the expectation that we’ll always have access to everything we need. When what you need is on your work or home PC, there are plenty of options for remotely accessing files using your phone. But if your roomie or the cleaning crew powers the machine down, you’ve got a problem – unless you’ve got a way to remotely power the machine back up.

[Ahmad Khattab]’s hack required getting up close and personal with his PC’s motherboard. A Particle Photon steals power from the always-on 3.3 volt line of the vacant Trusted Platform Module connector on his machine. Outputs from the Photon are connected to the motherboard’s power switch connection and a smartphone app drives the outputs and turns the machine on and off. As [Ahmad] admits, there are plenty of ways to attack this problem, including Wake-on-LAN. But there’s something to be said for the hardware approach, especially when a Photon can be had for $20.

Astute readers will note that we recently covered a very similar project using a Particle Core. Be sure to check that one out for a little more detail on using Particle’s cloud, and for some ideas on powering the module if your motherboard lacks a TPM port. In the meantime, enjoy [Ahmad]’s video.

Continue reading “Remote PC Power Control Thwarts Button Pushers”

Open Source… Windows?

There’s a lot to be said for open source software. The ability to change code to suit one’s needs, the fact that security vulnerabilities can be easier to find, and the overall transparency are just the tip of the iceberg when it comes to the strengths of using open source software. And, while Microsoft is no Apple when it comes to locking down their source code, their operating system is still, unfortunately, closed.

Don’t despair, though! There is a project out there that aims to change this. No, they’re not stealing anything or breaking into any computers to obtain Microsoft’s code. They’re writing their own version of Windows called ReactOS that aims to be binary-compatible with Windows. The software has been in development for over a decade, but they’re ready to release version 0.4 which will bring USB, sound, networking, wireless, SATA, and many more features to the operating system.

While ReactOS isn’t yet complete for everyday use, the developers have made great strides in understanding how Windows itself works. There is a lot of documentation coming from the project regarding many previously unknown or undocumented parts of Windows, and with more developers there could be a drop-in replacement for Windows within a few years. It’s definitely worth a shot if you fondly remember the frontier days of Linux where doing things like reading information on a CD required extensive experience using the terminal. If this is a little too much, though, there are other unique operating systems out there to investigate.

Thanks for the tip, [Matt]!

Fail Of The Week: Dave Jones And The Case Of The Terrible Tablet

Nothing spices up a quiet afternoon like the righteous indignance of an upset engineer, especially if that engineer is none other than [Dave Jones], on his EEVblog YouTube Channel. This week [Dave] has good reason to be upset. A viewer sent him what looked to be a nondescript 2010 era tablet from a company called Esinomed. From the outside it looked like a standard issue medical device. Opening up the back panel tells a completely different story though. This thing is quite possibly the worst hack job [Dave] (and we) have ever seen. This is obviously some kind of sales demo or trade show model. Even with that in mind, this thing is a fail.

wtf-solderThe tablet is based upon an off-the-shelf embedded PC motherboard and touchscreen controller. [Dave] took some offense at the hacked up USB connector on the touchscreen. We have to disagree with [Dave] a bit here, as the video seems to show that a standard mini-b connector wouldn’t have fit inside the tablet’s case. There’s no excuse for the USB cable shield draped over the bare touch controller board though. Things go downhill from there. The tablet’s power supply is best described as a bizarre mess. Rather than use a premade DC to DC converter, whoever built this spun their own switch mode power supply on a home etched board. The etching job looks good, but everything else, including the solder job, is beyond terrible. All the jumps and oddly placed components make it look like a random board from the junk bin was used to build this supply.

The story gets even worse with the batteries. The tablet has horribly hand soldered NiMH cells shoved here, there and everywhere. Most of the cells show split shrink wrap – a sure sign they have been overheated. It’s hard to tell from the video, but it appears as if a few cells have their top mounted vent holes covered with solder. That’s a great way to turn a simple rechargeable battery into a pipe bomb. Batteries can be safely hand soldered – Radio Controlled modelers did it for decades before LiPo cells took over.

We’ve all hacked projects together at the last minute; that’s one of the things we celebrate here on Hackaday. However, since this is a commercial medical device (with serial number 11 no less) we have to stamp this one as a fail.

Continue reading “Fail Of The Week: Dave Jones And The Case Of The Terrible Tablet”

A Modern 386 Development Board

Some readers out there probably have nostalgic feelings for their first 386 based PC, the beeps and hisses of the modem, and the classic sound of a floppy drive’s stepper motor. Perhaps that turbo button that we could never quite figure out.

If you want the power of a 386 processor today, you’re in luck: [Pierre Surply] has developed a modern development board for the 80386SX CPU. This board is based on a 386 processor that comes in a LQFP package for “easy” soldering, and an Altera Cyclone IV FPGA.

To allow the CPU to run, the FPGA emulates the chipset you would usually find on a PC motherboard. The FPGA acts as both a bus controller and a memory controller for the CPU. On the board, there’s an SRAM chip and internal memory on the FPGA, which can be accessed through the 386’s bus access protocol.

The FPGA also provides debugging features. A supervisor application running on the FPGA gives debugging functionality via a FTDI USB to UART chip. This lets you control operation of the CPU from a PC for debugging purposes. The FPGA’s memory can be programmed through a JTAG interface.

The project is very well documented, and is a great read if you’re wondering how your old 386 actually worked. It can even be hand soldered, so the adventurous can grab the design files and give it a go. The francophones reading can also watch the talk in the video below.

Continue reading “A Modern 386 Development Board”