This Jet Engine Will See You Through

Have you ever wished you could peer inside a complex machine while it was still running? We sort of can with simulations and the CAD tools we have today, but it isn’t the same as doing IRL. [Warped Perception] made a see-thru jet engine to experience the feeling. The effect, we dare say, is better than any simulation.

[Warped Perception] has a good bit of experience with jet engines and previously mounted them to his car. The first step was balancing, and while he didn’t use an oscilloscope, he could get it within a few thousands of a gram balanced. Then, after some light CAD work, it was all machining. Brackets were fabricated, and gaskets were laser cut to hold the large thick clear cover together. There are a few exciting things to see (and hear). The engine expands and contracts significantly due to pressure and heat, but it’s interesting to see it move physically as it ramps up and down.

Additionally, the sound as it goes through the various thrust levels is quite impressive. But, of course, what’s a jet engine test with an airflow test? Surprisingly, the engine didn’t pull in as much air as he thought. Eighty pounds of thrust doesn’t mean eighty pounds of air.

This 3D-printed water-cooled jet engine isn’t quite see-through, but it is interesting to see the thorough process of making the engine itself. Video after the break.

Continue reading “This Jet Engine Will See You Through”

Adding Voluminous Joy To A DIY Turbojet With A DIY Afterburner

You don’t happen to own and operate your own turbojet engine, do you? If you do, have you ever had the urge to “kick the tires and light the fires”? Kicking tires simply requires adding tires to your engine cart, but what about lighting the fires? In the video below the break, [Tech Ingredients] explains that we will require some specialized hardware called a re-heater — also known as an afterburner.

[Tech Ingredients] does a deep dive into the engineering behind turbojets, and explains how the very thing that keeps the turbines from melting also allows an afterburner to work. Also explained is why it can also be called a re-heater, and why there are limitations on the efficiency.

Moving on to the demonstration, two different homebrewed afterburners are put to use. The second iteration does exactly what you’d think it should do, and is a mighty impressive sight. We can only imagine what his neighbors think of all the noise! The first iteration was less successful, but that doesn’t mean it isn’t useful, and we’ll let you view the video below to see what else an afterburner can do. We’ll give you a hint: Worlds Biggest Fog Machine.

Does the thought of thrust turn your turbines? You might enjoy this motor-jet contraption that looks almost as fun as the real thing, but 3D printable!

Continue reading “Adding Voluminous Joy To A DIY Turbojet With A DIY Afterburner”

Recycled Speed Boat Beats The Barnacles Out Of Your Average Rebuild

There’s an old saying that says “Anything is possible with enough Time, Money, or Brains. Pick two.” For [Mr HỒ Thánh Chế], the choice was obvious: Time, and Brains. This is evident by the impressive DIY boat build shown in the video below the break.

[Mr HỒ] starts with an Isuzu marine diesel engine that was apparently found on the beach, covered in barnacles and keel worms (and who knows what else). A complete teardown reveals that the crankcase was miraculously spared the ravages of the sea, and somehow even the turbo survived. After a good cleaning and reassembly, the engine rumbles to life. What’s notable is that the entire engine project was done with only basic tools, save for a lathe. Even generally disposable parts such as the head gasket are re-used.

Moving onto the hull, half of an old damaged boat is used and a new top is built. Car seats out of a Toyota sit behind a steering column also from a car, while the deck is built from scratch out of square tubing, foam board, and fiberglass.

What we liked about the project isn’t so much the end result, it has some build quality issues and it looks like the steering is far too slow, but what project of our own hasn’t been knocked together for fun with some obvious flaws? In fact, that’s very often the epitome of the Hacker spirit- doing it quick, dirty, having fun, and iterating as we go. For that, our hat is off to [Mr HỒ].

If boat recycling puts the wind in your sails, check out this boat-turned-sauna project.

Continue reading “Recycled Speed Boat Beats The Barnacles Out Of Your Average Rebuild”

3D Printing A Carburetor Is Easier Than You Probably Think

We’ve all been there. You see a cool gadget on the Internet to 3D print and you can’t wait to fire up the old printer. Then you realize it will take 8 different prints over a span of 60 hours, chemical post-processing, drilling, exotic hardware, and paint to get the final result. [Peter Holderith’s] carburetor design, however, looks super easy.

If you have experience with real-world carbs, you might wonder how that would work, but as [Peter] points out, carburetors are very simple at the core — nothing more than a venturi. All the extra pieces you think of are for special cases and not necessary for basic operation. We doubt, though, that you could really use the thing in its current form in your car. There are no mounts and since he printed it in PLA, it seems like a hot engine would be a bad idea. However, it does work well with water and an electric blower.

[Peter] mentions that with some more work and the right material, he has no doubt he could create a working practical carb. We think he’s right. But even in this form, it is a great educational project for a budding car enthusiast — like the old transparent V8 engine models, maybe.

Speaking of transparent, we’ve seen — or maybe not seen is a better phrase — a see-through carburetor that is also a good demonstrator. If you could perfect a 3D printed carb, it would make conversion projects a lot easier.

the full charger with gas tank and engine

Charge Your Apple With Apples

When you think of ethanol, you might think of it as a type of alcohol, not alcohol itself. However, in reality, it is the primary ingredient in adult beverages. Which means humans have gotten quite good at making it, as we’ve been doing for a long time. With this in mind, [Sam Barker] decided to make ethanol out of apples to power a small engine to charge his phone.

The steps for making pure ethanol is quite similar to making alcoholic cider. A friend of [Sam’s] had an orchard and a surplus of apples, so [Sam] boiled them down and stored the mush in jugs. He added activated dry yeast to start the fermentation process. A dry lock allowed the CO2 gas that was being created to escape. Over a few weeks, the yeast converted all the sugar into ethanol and gas. In the meantime, [Sam] sourced a chainsaw and adapted the engine to run on ethanol, as ethanol needs to run richer than gasoline. The video below the break tells the story.

Continue reading “Charge Your Apple With Apples”

Home Made Stirling Engines From Expedient Materials

Many of us have read about Stirling engines, engines which form mechanical heat pumps and derive motion from the expansion and contraction of a body of air. A very few readers may have built one, but for many they remain one of those projects we’d rather like to try but never quite have the inclination. The YouTube channel of [Geral Na Prática] should provide plenty of vicarious enjoyment then, with the construction of a range of Stirling engines from commonly available materials. We have Coke cans, PVC pipe, and nebuliser cartridges forming pistons and cylinders, with wire wool serving as a regenerative heat store. The latest video is below the break, an amazing 10-cylinder rotary device.

The Stirling engine is perhaps the quintessential example of a device whose time never came, never able to compete in power and efficiency with first steam engines and then internal combustion engines, it has over the years been subject to a variety of attempted revivals. Today it has appeared variously in solar power projects and in NASA’s hypothetical off-world power plants, and will no doubt continue to be promoted as an alternative energy conversion mechanism. We’ve featured many working model Stirling engines in our time and even done a longer investigation of them, but sadly we’ve yet to see a story involving a practical version.

Continue reading “Home Made Stirling Engines From Expedient Materials”

A V2 Rocket Inspired Steam Turbine Skateboard Is Just Around The Corner

[Integza] never fails to amuse with his numerous (and sometimes really sketchy) attempts to create usable thrust, by pretty much all means possible and the latest video (embedded below) attempting to run a reaction turbine from decomposing hydrogen peroxide, doesn’t fail to disappoint. The inspiration came from the WWII V2 rocket, which used Sodium Permanganate to breakdown Hydrogen Peroxide. This produced high pressure steam, which spun a turbine, which in turn drove the turbopumps that delivered the needed huge quantity of alcohol and liquid oxygen into the combustion chamber.

After an initial test of this permanganate-peroxide reaction proved somewhat disappointing (and messy) he moved on to a more controllable approach — using a catalytic converter from a petrol scooter in place of the messy permanganate. This worked, so the next task was to build the turbine. Naturally, this was 3D printed, and the resulting design appeared to work pretty well with compressed air as the power source. After scaling up the design, and shifting to CNC-machined aluminium, it was starting to look a bit more serious. The final test shows the turbine being put through its paces, running from the new precious metal catalyst setup, but as can be seen from the video, there is work to be done.

There appears to be a fair amount of liquid peroxide passing through into the turbine, which is obviously not desirable. Perhaps the next changes should be the mount the catalyser vertically, to prevent the liquid from leaving so easily, as well as adding some baffling to control the flow of the liquid, in order to force it to recycle inside the reaction vessel? We can’t wait to see where this goes, hopefully the steam-turbine powered skateboard idea could actually be doable? Who knows? But we’re sure [Integza] will find a way!

With steam power, there’s more than one way to get usable rotational work, like using a reciprocating engine, which can be expanded to a whole machine shop, and whilst boiling water (or catalytically decomposing Hydrogen Peroxide)  provides high pressure gas, how about just using boiling liquid nitrogen? Possibly not.

Continue reading “A V2 Rocket Inspired Steam Turbine Skateboard Is Just Around The Corner”