High Performance RISC-V

From the Institute of Computing Technology division of the Chinese Academy of Sciences and Peng Cheng Laboratory comes a high-performance and well-documented RISC-V core called XiangShan.

In the Git repository, you’ll find several branches including at least two stable branches: Yanqihu and Nanhu. The currently developed architecture, Kunminghu, is impressive, with a sophisticated instruction fetch unit, a reorder buffer, and a register renaming scheme.

The point of these types of circuits in a CPU is to allow multiple instructions to process at once. This also implies that instructions can be executed out of order. A cursory glance didn’t show any branch prediction logic, but that may be a limitation of the documentation. If there isn’t one, that would be an interesting thing to add in a fork if you are looking for a project.

On the computing side, the processor contains an integer block, a floating point unit, and a vector processor. Clearly, this isn’t a toy processor and has the capability to compete with serious modern CPUs.

There is a separate GitHub for documentation. It looks like they try to keep documentation in both Mandarin and English. You can also find some of the academic papers about the architecture there, too.

We love CPU design, and this is an interesting chance to contribute to an open CPU while there are still interesting things to do. If you need to start with something easier, plenty of small CPUs exist for educational purposes.

Cheap FPGA PCIe Development

Typically, if you want to build an FPGA project inside a PC, you’d need a fairly expensive development board that plugs into the bus. However, [CircuitValley] found some IBM RS-485 boards that are little more than a PCIe board with an Intel FPGA onboard. These are widely avaiable on the surplus market for around $20 shipped. He’s been documenting how to use them.

The FPGA onboard is a Cyclone IV with about 21,000 logic elements and a little over 750 kbits of memory. The board itself has configuration memory, power management, and a few connectors. The JTAG header is unpopulated, but the footprint is there. You simply need to supply a surface-mount pin header and an external JTAG probe, and you can program. Even if you aren’t interested in using an FPGA board, the reverse engineer steps are fun to watch.

The situation reminds us a little of the RTL-SDR — when a device uses a programmable device to perform nearly all of its functions, it is subject to your reprogramming. What would you do with a custom PCIe card? You tell us. Need a refresher on the bus? We can help. Thinking of building some sort of FPGA accelerator? Maybe try RIFFA.

Continue reading “Cheap FPGA PCIe Development”

Did You Know YoSys Knows VHDL Too?

We’ve been fans of the Yosys / Nextpnr open-source FPGA toolchain for a long while now, and like [Michael] we had no idea that their oss-cad-suite installer sets up everything so that you can write in Verilog or VHDL, your choice. Very cool!

Verilog and VHDL are kind of like the C and ADA of the FPGA world. Verilog will seem familiar to you if you’re used to writing code for computers. For instance, it will turn integer variables into wires that carry the binary values for you. VHDL code looks odd from a software programmer’s perspective because it’s closer to the hardware and strongly typed: an 8-bit integer isn’t the same as eight wires in VHDL. VHDL is a bigger jump if you have software in your brain, but it’s also a lot closer to describing how the hardware actually works.

We learned Verilog, because it’s what Yosys supported. But thanks to GHDL, a VHDL analyzer and synthesizer, and the yosys-ghdl-plugin, you can write your logic in VHDL too. Does this put an end to the FPGA-language holy wars? Thanks, Yosys.

[Michael] points out that this isn’t really news, because the oss-cad-suite install has been doing this for a while now, but like him, it was news to us, and we thought we’d share it with you all.

Want to get started with FPGAs and the open-source toolchain? Our own [Al Williams] wrote up a nice FPGA Boot Camp series that’ll take you from bits to blinking in no time.

Tridora: A Full-Custom CPU Designed For Pascal

[Sebastian Lederer] has created Tridora: an unusual stack-based CPU core intended for FPGA deployment, co-developed with its own Pascal compiler. The 32-bit word machine is unusual in that it has not one but three stacks, 16-bit instruction words, and a limited ISA, more like those of the 8-bit world. No multiply or divide instructions will be found in this CPU.

The design consists of about 500 lines of Verilog targeting the Digilent Arty-A7 FPGA board, which is based around the Xilinx Artix-7 FPGA line. [Sebastian] plans to support the Nexys A7 board, which boasts a larger FPGA array but has less RAM onboard. The CPU clocks in at 83 MHz with four clock cycles per instruction, so over 20 MIPS, which is not so shabby for a homebrew design. Wrapped around that core are a few simple peripherals, such as the all-important UART, an SD card controller and a VGA display driver. On the software side, the Pascal implementation is created from scratch with quite a few restrictions, but it can compile itself, so that’s a milestone achieved. [Sebastian] also says there is a rudimentary operating system, but at the moment, it’s a little more than a loader that’s bundled with the program image.

The Tridora Gitlab project hosts the Verilog source, an emulator (written in Golang, not Pascal) and a suite of example applications. We see quite a few custom CPUs, often using older or less popular programming languages. Here’s an FPGA-based Forth machine to get you started. Implementing programming languages from scratch is also a surprisingly common hack. Check out this from-scratch compiler for the Pretty Laughable Programming language.

A Really Low Level Guide To Doing Ethernet On An FPGA

With so much of our day-to-day networking done wirelessly these days, it can be easy to forget about Ethernet. But it’s a useful standard and can be a great way to add a reliable high-throughput network link to your projects. To that end, [Robert Feranec] and [Stacy Rieck] whipped up a tutorial on how to work with Ethernet on FPGAs. 

As [Robert] explains, “many people would like to transfer data from FPGA boards to somewhere else.” That basically sums up why you might be interested in doing this. The duo spend over an hour stepping through doing Ethernet at a very low level, without using pre-existing IP blocks to make it easier. The video explains the basic architecture right down to the physical pins on the device and what they do, all the way up to the logic blocks inside the device that do all the protocol work.

If you just want to get data off an embedded project, you can always pull in some existing libraries to do the job. But if you want to really understand Ethernet, this is a great place to start. There’s no better way to learn than doing it yourself. Files are on GitHub for the curious. Continue reading “A Really Low Level Guide To Doing Ethernet On An FPGA”

What Is SystemVerilog, Really?

[Mark] starts a post from a bit ago with: “… maybe you have also heard that SystemVerilog is simply an extension of Verilog, focused on testing and verification.” This is both true and false, depending on how you look at it. [Mark] then explains what the differences are. It’s a good read if you are Verilog fluent, but just dip your toe into SystemVerilog.

Part of the confusion is that until 2009, there were two different things: Verilog and SystemVerilog. However, the SystemVerilog 2009 specification incorporates both languages, so modern Verilog is SystemVerilog and vice versa.

Continue reading “What Is SystemVerilog, Really?”

Making USB Blaster Clones Work For Linux

The last time we checked in with [Downtown Doug Brown], he had some cheap Altera USB Blaster clones that didn’t want to work under Linux. The trick at that time was to change the device’s 24 MHz clock to 12 MHz. This month, he’s found some different ones that don’t work, but now the clock change doesn’t work. What’s the problem?

He also picked up a Terasic clone, which does work on Linux and is considered, according to [Doug], the best of the clones. The units were superficially similar. So what follows is a lot of USB tracing and dumping of the CPLD chip’s configuration.

Continue reading “Making USB Blaster Clones Work For Linux”