Hackaday Podcast 209: HDMI Tempest, Norm Upscaled, Seeing Electrons, And When The Radios Go Silent

It was one of those weeks, where Elliot and Dan found a bounty of interesting hacks to choose from for the podcast, making it hard to pick. But pick we did, and we found so many deep and important questions. What good is a leaky HDMI cable? Good for falling down a TEMPEST-like rabbit hole, that’s what. Why would you use a ton of clay to make a car? Because it’s cool, that’s why. What does an electron look like? A little like a wiggling wire, but mostly it looks like a standing wave… of waves.

Is artificial intelligence going to take over all the code and start suing us for copyright violations? Maybe yes, maybe no, but we’re definitely in a strange, new world. And when all our media is on demand, what is the spectrum that broadcasters currently use going to be good for?

It’s not all heavy questions, of course; we found a lot of fun hacks, like an extreme drill press makeover, a couple of low-power cyberdecks, the return of Norm Abram in glorious AI-generated HD, getting up close and personal with flip dot displays, and a sled that lets you go uphill as easily as going downhill.

Check out the links below if you want to follow along, and as always, tell us what you think about this episode in the comments!

Download your own personal copy!

Continue reading “Hackaday Podcast 209: HDMI Tempest, Norm Upscaled, Seeing Electrons, And When The Radios Go Silent”

Hacker Hotel 2023 Had A Very Cool Badge

One effect of the global pandemic was that there were relatively few events in our sphere for a couple of years. This and that other by-product of COVID-19, the chip shortage, meant that over the past year we’ve been treated to several event badges that should have appeared in 2020 or 2021, but didn’t due to those cancelled events. We were lucky enough to receive probably the last of these delayed badges in mid February, as we made the journey to the central part of the Netherlands to Hacker Hotel 2023.

A Puzzle, A 4-Bit Computer, And An Artwork

The badge takes the form of a rectangular PCB with all parts on the top side. The brains of the operation is an RP2040, and it’s powered by a CR2032 coin cell in a holder.  It’s divided into two parts, the top third which carries the circuitry and the lower two thirds of which as a row of buttons and LEDs. It’s pretty obvious from the start that it has data and address lines of a 4-bit computer, and as well as these there is an evident serial port and a USB socket. The artwork comes form the same artist whose work graced both the previous Hacker Hotel badge and the MCH2022 badge, and the rear of the PCB makes full use of all layers to create a mystical puzzle. The sum is to create a puzzle game intended to entertain the visitor, take them round the venue, and find clues to an eventual solution. I love the design both from an artistic and technical viewpoint, but have to admit that the puzzle aspect isn’t really my thing. Thus here we’ll concentrate on the badge hardware and production, and mention the puzzles only in passing. Continue reading “Hacker Hotel 2023 Had A Very Cool Badge”

New Raspberry Pi Camera With Global Shutter

Raspberry Pi has just introduced a new camera module in the high-quality camera format. For the same $50 price you would shell out for the HQ camera, you get roughly eight times fewer pixels. But this is a global shutter camera, and if you need a global shutter, there’s just no substitute. That’s a big deal for the Raspberry Pi ecosystem.

Global vs Rolling

Most cameras out there today use CMOS sensors in rolling shutter mode. That means that the sensor starts in the upper left corner and rasters along, reading out exposure values from each row before moving down to the next row, and then starting up at the top again. The benefit is simpler CMOS design, but the downside is that none of the pixels are exposed or read at the same instant.

Continue reading “New Raspberry Pi Camera With Global Shutter”

Supercon 2022: Alec Vercruysse Can See Through Murky Water

Detecting objects underwater isn’t an easy challenge, especially when things get murky and dark. Radio waves don’t propagate well, so most techniques rely on sound. Sonar is itself farily simple, simply send out a ping and listen for an echo, and that will tell you how far something is. Imaging underwater is significantly harder, because you would additionally need to know where each echo is coming from.

To answer the question of whether it is possible to put together an ultrasonic 3D imager that would cheaply enable anyone to image objects underwater, [Alec Vercruysse] and fellow team members at the Harvey Mudd College set out to create a system that does exactly that. You can read the presentation slides (PDF) or check out the entire project in the GitHub repository.

Continue reading “Supercon 2022: Alec Vercruysse Can See Through Murky Water”

Hackaday Berlin: First Round Of Talks

We’re super excited to announce the first round of speakers for Hackaday Berlin!  We’re set to convene on Friday night, March 24th for an evening warm up before the main show on Saturday, March 25. Featuring the triumphant return of Voja’s 4-bit badge, a crew of awesome speakers, lightning talks, workshops, music, food, badge hacking, and all the best of the Hackaday community, this will be a day to remember. And then we’ll chill out Sunday morning with a Bring-a-Hack brunch.

So without further ado: the first round of speakers!

Jiska Classen
Hacking Closed-Source: Reverse Engineering Real-World Products

Closed-source software is prevalent in our everyday lives, limiting our ability to understand how it works, which privacy implication it poses to the processed data, and addressing potential issues in time. Despite the growth of open-source movements, users often have no choice but to rely on closed-source solutions, e.g., for medical devices and IoT products. We’ll discuss key techniques to help you get started with reverse engineering. Hacking your own devices can be challenging, bricking a device is not uncommon, but so is celebrating the moments of a revived and modified device.

James Bruton
Being a Full-Time YouTuber

 

YouTube is my full-time job and has been for four years. I create STEM education content using everything from 3D printing, CNC, Welding, to Microcontrollers and Coding. Find out how I got started, how I make money, what goes on in the background, and what my future plans are. I’ll tell you how you can do it too!

Trammell Hudson
Hacking your dishwasher for cloudless appliances

Why does your dishwasher, laundry or coffee-pot need to talk to the cloud? In this presentation, Trammell Hudson shows how he reverse engineered the encrypted connections between Home Connect appliances and the Bosch-Siemens Cloud servers, and how you can control your own appliances with your self-hosted MQTT home automation system by extracting the devices’ authentication keys and connecting to their local websocket ports. No cloud required!

Bleeptrack
Oops, my project ended up in a museum

Parameterized design allows for the adaption of projects to different needs but can also change the aesthetic to a persons liking. Bleeptrack will walk you through the creation process and tools of her generative projects, talk about her experience manufacturing unique pieces and explains how to cope when your freshly finished project gets locked up in an art exhibition for a few months.

Ali Shtarbanov
Creating Hardware Development Platforms for Real-World Impact: FlowIO Platform

What does it really take do create and deploy a development platform for real-world impact? Why do we need development platforms and how can they democratize emerging fields and accelerate innovation? Why do most platform attempts fail and only very few succeed in terms of impact? I will discuss the key characteristics that any platform technology must have in order for it to be able to useful for diverse users. FlowIO was the winner of the 2021 Hackaday Grand Prize as well as over a dozen other engineering, research, and design awards.

Come join us!

You!

Whatever you’re up to.

We want you to bring your current project, world-changing ideas, or simply fun hacks for a 7-minute lightning talk!

 

What’s Going To Happen To Legacy Broadcast Bands When The Lights Go Out?

Our smartphones have become our constant companions over the last decade, and it’s often said that they have been such a success because they’ve absorbed the features of so many of the other devices we used to carry. PDA? Check. Pager? Check. Flashlight? Check. Camera? Check. MP3 player? Of course, and the list goes on. But alongside all that portable tech there’s a wider effect on less portable technology, and it’s one that even has a social aspect to it as well. In simple terms, there’s a generational divide that the smartphone has brought into focus, between older people who consume media in ways born in the analogue age, and younger people for whom their media experience is customized and definitely non-linear.

The Kids Just Don’t Listen To The Radio Any More

A 1957 American family watching TV
We’re guessing this is no longer a scene played out in many homes. Evert F. Baumgardner, Public domain.

The effect of this has been to see a slow erosion of the once-mighty reach of radio and TV broadcasters, and with that loss of listenership has come less of a need for the older technologies they relied on. Which leaves a fascinating question here at Hackaday, what is going to happen to all that spectrum? Indeed, there’s a deeper question behind all that, is lower frequency spectrum even that valuable any more?

In the old days, we had analogue TV in several-MHz-wide channels spread across a large part of the UHF bands and some smaller chunks of VHF. Among that we had 20 MHz of FM broadcasting around the 100 MHz mark, and disregarding shortwave, then a MHz of AM down around 1 MHz. Europeans got a bonus band down there too: we’ve got Long Wave, over 100 kHz of AM goodness roughly centered around 200 kHz.

Continue reading “What’s Going To Happen To Legacy Broadcast Bands When The Lights Go Out?”

Hackaday Links Column Banner

Hackaday Links: March 5, 2023

Well, we guess it had to happen eventually — Ford is putting plans in place to make its vehicles capable of self-repossession. At least it seems so from a patent application that was published last week, which reads like something written by someone who fancies themselves an evil genius but is just really, really annoying. Like most patent applications, it covers a lot of ground; aside from the obvious capability of a self-driving car to drive itself back to the dealership, Ford lists a number of steps that its proposed system could take before or instead of driving the car away from someone who’s behind on payments.

Examples include selective disabling conveniences in the vehicle, like the HVAC or infotainment systems, or even locking the doors and effectively bricking the vehicle. Ford graciously makes allowance for using the repossessed vehicle in an emergency, and makes mention of using cameras in the vehicle and a “neural network” to verify that the locked-out user is indeed having, say, a medical emergency. What could possibly go wrong?

Continue reading “Hackaday Links: March 5, 2023”