A Touchless Handwashing Timer Comes In Handy

In 2020, it’s no longer enough to simply wash your hands. You’ve got to do it right. Proper process involves rubbing soap and water over every surface of your hands, and taking a full 20 seconds to do the job. While many recommend singing various popular songs to keep time, that can be more than a little embarassing in shared spaces. [Alex Glow] instead created this simple timer to help out.

The timer is built on the Adafruit Circuit Playground Express, a devboard that features 10 RGB LEDs already onboard, making the project a cinch. It also comes with a MEMS microphone and a light sensor all ready to go. Thus, with a bit of code, [Alex] was able to create a timer activated by a loud noise, such as clapping. Once detected, the timer starts, flashing its LEDs to indicate time remaining. There’s also a nightlight feature, which activates when light levels decrease, making it easier to navigate the bathroom in the dark.

It’s a useful little project for these troubled times, and one that makes great use of everything onboard the Circuit Playground Express. Having everything included certainly does make projects come together quickly. You can even program it from your phone! Video after the break.

Continue reading “A Touchless Handwashing Timer Comes In Handy”

Cellular Tracking Used During COVID-19 Pandemic

As most in the technology community know, nation states have a suite of powerful tools that can be used to trace and monitor mobile phones. By and large, this comes up in discussions of privacy and legislation now and then, before fading out of the public eye once more. In the face of a global pandemic, however, governments are now using these tools in the way many have long feared – for social control. Here’s what’s happening on the ground.

The Current Situation

With COVID-19 sweeping the globe, its high level of contagiousness and rate of hospitalizations has left authorities scrambling to contain the spread. Unprecedented lockdowns have been put in place in an attempt to flatten the curve of new cases to give medical systems the capacity to respond. A key part of this effort is making sure that confirmed cases respect quarantine rules, and isolate themselves to avoid spreading the disease. Rules have also been put in place in several countries where all overseas arrivals must quarantine, regardless of symptoms or status. Continue reading “Cellular Tracking Used During COVID-19 Pandemic”

FDA Says PPE Can Be Reused After Trip Through Shipping Container Decontamination System

We are hearing so much in the news about shortages of personal protective equipment, or PPE, for healthcare workers. Factories are being asked to perform the impossible when it comes to production be the need is so real, so immediate, and so widespread.

The problem with rapid consumption of PPE is that once it has been exposed to infection, it’s contaminated and can’t be used again. Physically it may be fine, but it retains the capability to infect other people. If there were some way it could be effectively cleaned and decontaminated for re-use, it would reduce the strain on the supply chain and result in a greater availability of PPE for all those who require it.

This is the promise of Battelle’s Critical Care Decontamination System, a shipping-container-sized unit which has received approval from the FDA at break-neck speed.

Continue reading “FDA Says PPE Can Be Reused After Trip Through Shipping Container Decontamination System”

Behind The Scenes Of Folding@Home: How Do You Fight A Virus With Distributed Computing?

A great big Thank You to everyone who answered the call to participate in Folding@Home, helping to understand proteins interactions of SARS-CoV-2 virus that causes COVID-19. Some members of the FAH research team hosted an AMA (Ask Me Anything) session on Reddit to provide us with behind-the-scenes details. Unsurprisingly, the top two topics are “Why isn’t my computer doing anything?” and “What does this actually accomplish?”

The first is easier to answer. Thanks to people spreading the word — like the amazing growth of Team Hackaday — there has been a huge infusion of new participants. We could see this happening on the leader boards, but in this AMA we have numbers direct from the source. Before this month there were roughly thirty thousand regular contributors. Since then, several hundred thousands more started pitching in. This has overwhelmed their server infrastructure and resulted in what’s been termed a friendly-fire DDoS attack.

The most succinct information was posted by a folding support forum moderator.

Here’s a summary of current Folding@Home situation :
* We know about the work unit shortage
* It’s happening because of an approximately 20x increase in demand
* We are working on it and hope to have a solution very soon.
* Keep your machines running, they will eventually fold on their own.
* Every time we double our server resources, the number of Donors trying to help goes up by a factor of 4, outstripping whatever we do.

Why don’t they just buy more servers?

The answer can be found on Folding@Home donation FAQ. Most of their research grants have restrictions on how that funding is spent. These restrictions typically exclude capital equipment and infrastructure spending, meaning researchers can’t “just” buy more servers. Fortunately they are optimistic this recent fame has also attracted attention from enough donors with the right resources to help. As of this writing, their backend infrastructure has grown though not yet caught up to the flood. They’re still working on it, hang tight!

Computing hardware aside, there are human limitations on both input and output sides of this distributed supercomputer. Folding@Home need field experts to put together work units to be sent out to our computers, and such expertise is also required to review and interpret our submitted results. The good news is that our contribution has sped up their iteration cycle tremendously. Results that used to take weeks or months now return in days, informing where the next set of work units should investigate.

Continue reading “Behind The Scenes Of Folding@Home: How Do You Fight A Virus With Distributed Computing?”

Professional Ventilator Design Open Sourced Today By Medtronic

Medical device company Medtronic released designs for one of their ventilators to open source for use in the COVID-19 pandemic. This is a laudable action, and there is plenty to glean from the specs (notable is that the planned release is incomplete as of this writing, so more info is on the way). Some initial reactions: medical devices are complicated, requirements specifications are enormous, the bill of materials (BOM) is gigantic, and component sourcing, supply chain, assembly, and testing are just as vital as the design itself.

The pessimist in me says that this design was open sourced for two reasons; to capitalize on an opportunity to get some good press, and to flex in front of the DIY community and convince them that the big boys should be the ones solving the ventilator shortage. The likelihood of anyone actually taking these specs and building it as designed are essentially zero for a variety of reasons, but let’s assume their intent is to give a good starting point for newer changes. The optimist in me says that after what happened to California over the weekend with 170 ventilators arriving broken, it might be nice to have open designs to aid in repair of existing non-functioning ventilators.

The design details released today are for their PB560 model, which was originally launched in 2010 by a company called Covidien, before it merged with Medtronic, so we’re already starting with a device design that’s a decade old. But it’s also a design that has proven itself through widespread use, and this data dump gives us a great look at what actually goes into one of these machines. Let’s take a look.

Continue reading “Professional Ventilator Design Open Sourced Today By Medtronic”

Coronavirus Testing Follow-Up: Rapid Immunologic Testing

When I started writing my recent article on COVID-19 testing, I assumed that I would be doing a compare and contrast sort of article. Like many people, I assumed that the “gold standard” test would be the reverse transcriptase-polymerase chain reaction (RT-PCR) test that I described in some detail. And indeed it is, but it’s not without its problems, such as the lack of certified labs and the need for trained technicians to run the samples. I also assumed there would be another test, a simple serological test that could use antibodies to discern if there was an active or even a previous, resolved infection.

At the time I wrote the first article, I could find no indication of an immunologic test for COVID-19 (more specifically, a test for SARS-Cov-2, the virus that causes COVID-19). But almost as rapidly as the number of COVID-19 cases rises, the news changes, and it appears that simple, rapidly performed antibody tests are now or soon will be available. They likely won’t replace the gold standard RT-PCR test, but they do stand to be a game-changer for the front line providers and the victims of this disease. So it pays to take a quick look at immunoassays for infectious diseases, and learn how they work.

Continue reading “Coronavirus Testing Follow-Up: Rapid Immunologic Testing”

NIH Approved 3D-Printed Face Shield Design For Hospitals Running Out Of PPE

As the world faces a pandemic of monumental proportions, hospitals have been hit hard. The dual problems of disrupted manufacturing and supply chains and huge spikes in demand have led to many medical centres running out of protective gear. Makers have stepped up to help in many ways by producing equipment, with varying results. [Packy] has shared a link to a 3D-printable face shield that, unlike some designs floating around, is actually approved by the National Institute of Health in the USA.

The shield consists of a 3D printed headband, which is then coupled with a transparent piece of plastic for the face shield itself. This can be lasercut, or sourced from a document cover or transparency sheet. The design is printable in PLA or a variety of other common materials, and can be assembled easily with office supplies where necessary.

The design is available from the NIH here. (Update: 4/1/2020 here’s an alternate link as original link seems to be suffering from heavy server load) For those eager to help out, it’s important to do so in an organised fashion that doesn’t unduly take resources away from healthcare professionals trying to get an important job done. We’ve seen other hacks too, such as these 3D printed ventilator components being rushed into service in Italy.