This Stainless Steel Knife Build Starts With Raw Iron Ore

Making knives at home has become a popular hobby, thanks partly to reality TV and the free time and idle hands afforded by lockdowns. Depending on how far you get into the hobby, builds can range from assembling and finishing a kit with pre-forged parts, to actual blacksmithing with a hammer and anvil. But pretty much every build includes steel from a commercial supplier.

Not this one. Rather than buy his metal from the usual sources, [Thoisoi]’s first stop was an iron mine in the Italian Alps, where he picked up a chunk of iron ore — magnetite, to be precise. Smelting one’s own iron from raw ore and alloying it into steel is generally not a backyard project thanks to the high temperatures needed, a problem [Thoisoi] solved with the magic of thermite. The iron oxide and aluminum in the thermite mix react in an exceptionally exothermic manner to generate elemental iron, which under controlled conditions can be captured as a more or less pure ingot, ready for forging.

After a test with commercially obtained iron oxide, [Thoisoi] tried his pulverized magnetite. And thanks to the addition of goodies like graphite, manganese, nickel, silicon, and chromium, he was eventually able to create a sizable lump of 402 stainless steel. He turned the metal over to an actual blacksmith for rough forging; it sure seemed to act like steel on the anvil. The finished knife looks good and performs well, and the blade has the characteristic look of stainless. Not a bad result, and all at the cost of a couple of clay flowerpots.

Continue reading “This Stainless Steel Knife Build Starts With Raw Iron Ore”

BPS.Space Succesfully Lands A Model Rocket

If you’ve been following [Joe Barnard]’s rocketry projects for the past few years, you’ll know that one of his primary goals has been to propulsively land a model rocket like SpaceX. Now, 7 years into the rollercoaster journey, he has finally achieved that goal with the latest version of his Scout rocket.

Rocket touching down
We have touchdown!

Many things need to come together to launch AND land a rocket on standard hobby-grade solid fuel rocket motors. A core component is stabilization of the rocket during the entire flight, which achieved using a thrust-vectoring control (TVC) mount for the rocket motors and a custom flight computer loaded with carefully tuned guidance software. Until recently, the TVC mounts were 3D printed, but [Joe] upgraded it to machined aluminum to eliminate as much flex and play as possible.

Since solid-fuel rockets can’t technically be throttled, [Joe] originally tried to time the ignition time of the descent motor in such a manner that it would burn out as the rocket touches down. The ignition time and exact thrust numbers simply weren’t repeatable enough, so in his 2020 landing attempts, he achieved some throttling effect by oscillating the TVC side to side, reducing the vertical thrust component. This eventually gave way to the final solution, a pair of ceramic pincers which block the thrust of the motors as required.

Another interesting component is the landing legs. Made from light carbon fiber rods, they are released by melting a rubber band with nichrome wire and fold into place under spring tension. They also had to be carefully refined to absorb as much impact as possible without bouncing, which killed a few previous landing attempts.

Scrolling back through [Joe]’s videos and seeing the progress in his engineering is absolutely inspiring, and we look forward to his future plans. These include a functional scale model of the belly-flopping starship, a mysterious “meat rocket”, and the big one, a space shot to exceed 100 km altitude.

Continue reading “BPS.Space Succesfully Lands A Model Rocket”

Stewart Platform Wields Magic Fingers To Massage Your Scalp

Attention Hackaday editors: We on the writing crew hereby formally request budget allocation for installing a Stewart platform head massager on the chair of each workstation in the secret underground writer’s bunker. We think the benefits that will accrue thanks to reduced stress alone will more than justify the modest upfront costs. Thank you for your consideration.

OK, maybe that request is going nowhere, but having been on the receiving end of these strangely relaxing springy scalp stimulators, we can see where [David McDaid] was going with this project. As he clearly states up front, this is a ridiculously over-engineered way to get your scratchies on, but there’s very little not to love about it. Stewart platforms, which can position a surface with six degrees of freedom and range in size from simple ball balancers to full-blown motion simulators, are fascinating devices, and we can’t think of a better way to learn about them than by building one.

Like all Stewart platforms, [David]’s is mechanically simple but kinematically complicated, and he takes great pains to figure out all the math and explain it in an approachable style. The device is mounted with the end-effector pointed down, allowing the intended massagee to insert their noggin into the business end and receive the massage pattern of their choice. Looking at the GIFs below, it’s easy to see why [David] favors the added complexity of a Stewart, which makes interesting patterns like “The Calmer” possible. They’re all intriguing, although the less said about “The Neck Breaker” the better, we’d say.

Hats off (lol) to [David] for this needless complex but entertaining build.

Continue reading “Stewart Platform Wields Magic Fingers To Massage Your Scalp”

Dead Spider Becomes Robot Gripper: It’s Necrobotics!

Robot arms and grippers do important work every hour of every day. They’re used in production lines around the world, toiling virtually ceaselessly outside of their designated maintenance windows.

They’re typically built out of steel, and powered by brawny hydraulic systems. However, some scientists have gone for a smaller scale approach that may horrify the squeamish. They’ve figured out how to turn a dead spider into a useful robotic gripper.

The name of this new Frankensteinian field? Why, it’s necrobotics, of course!

Continue reading “Dead Spider Becomes Robot Gripper: It’s Necrobotics!”

Calculus Made Easy In The Car

If you had the traditional engineering education, you’ve made your peace with calculus. If you haven’t, you may have learned it on your own, but for many people, calculus has a reputation for being super difficult. While some of the details can be very tricky, the core concepts are actually simple and [Mathologer] has a very simple explanation along with some good graphics that can help you get started on calculus mastery if you’ve been putting it off. Using a car on the highway as the prototypical example, he covers quite a bit of ground in the 30 minute video that you can see below.

Of course, this isn’t a unique idea that calculus is actually simple. The video credits the great book “Calculus Made Easy” that we’ve talked about before. That 100-year-old (and then some) book has a similar approach to the topic.

Continue reading “Calculus Made Easy In The Car”

Simple Universal Modem Helps Save And Load Data From Tape

Back in the early days of the home computer revolution, data was commonly saved on tape. Even better, those tapes would make an almighty racket if you played them on a stereo, because the data was stored in an audio format.  The Simple Universal Modem from [Anders Nielsen] is built to work in a similar way, turning data into audio and vice versa.

The project consists of a circuit for modulating data into audio, and demodulating audio back into data. It’s “universal” because [Anders] has designed it to be as format-agnostic as possible. It doesn’t matter whether you want to store data on a digital voice recorder, a cassette deck, or an old reel-to-reel. This build should work fairly well on all of them!

On the modulation side of things, it’s designed to be as analog-friendly as possible. Rather than just spitting out rough square waves, it modulates them into nice smooth sine waves with fewer harmonics. On the demodulation side, it’s got an LM393 comparator which can read data on tape and spit out a clean square wave for easy decoding by digital circuitry.

If you find yourself trying to recover old data off tapes, or writing to them for a retrocomputing project, this build might be just what you need. [Anders] even goes as far as demonstrating its use with an old reel-to-reel deck in a helpful YouTube video.

There really were some weird ways of storing data way back when. Just ask IBM. Video after the break.

Continue reading “Simple Universal Modem Helps Save And Load Data From Tape”