Light Controlled Musical Instrument

Illumaphone Uses Light To Make Music

Move aside Theremin,  we have another crazy instrument that relies on its musicians to frantically wave their arms around to produce a beat. This is the Illumaphone.

[Bonnie Eisenman] recently took a course on Electronic Music, and for her final project she was allowed to basically do whatever she wanted — so she chose to create a custom musical instrument. It’s fairly simple on the hardware side, making use of coffee cups, an Arduino Uno, six photo-resistors, some alligator clips and a whole bunch of cardboard — but don’t let the lackluster parts list fool you, it actually works quite well for what it is!

Each coffee cup is a different note, and the amount of light that gets into the cup determines its volume and vibrato. It even auto-calibrates to the ambient light levels when it is first setup! The light level data is interpreted by the Arduino which then sends it to a laptop standing by, which uses a software called ChucK to synthesize the notes for output.

Continue reading “Illumaphone Uses Light To Make Music”

The Teensy Becomes An MPC

A staple of every recording studio today, the Akai MPC began as a simple sampling groove box in the early 90s. The form factor of a few force sensitive pads assignable to different samples should be familiar to anyone with a little bit of MIDI gear, but these are rarely custom-made devices. Now, it runs on a Teensy. [Michele] created his own MPC-style MIDI pad controller with the Teensy 3.0, the Teensy audio adapter board, and an ingenious PCB design that uses replacement MPC pads.

[Michele]’s MPC was first featured in the MIDI hacklet, but back then the only working component was the pads themselves. The velocity sensitive pads are made of two copper traces laid on a single acetate sheet. A bit of Velostat is glued to the back of the pad so when the pad is pressed, it contacts both of the traces. The harder the pad is pressed, the lower the impedance, and with everything sent to an analog pin, each pad becomes a force sensitive resistor.

With the key feature of an MPC taken care of, [Michele] turned his attention to the sampling and software of his device. The new Teensy 3.0 audio adapter board – and a great new library – takes care of everything. [Michele] doesn’t have a proper video of his MPC up yet, but he was able to film a random guy playing his machine at Rome Maker Faire yesterday. You can check that out below.

Continue reading “The Teensy Becomes An MPC”

Sweet Stepper Of [Jeremy]’s Rocks Out With Its Box Out

Inspired by the floppy drive orchestras of others, [Jeremy] has built a Pi-driven MIDI music box with stepper motor resonators and outlined the build on hackaday.io.

Control for the motors comes from an Iteaduino Mega 2560. The music starts as a MIDI file, gets processed into a text file, and is played over serial by a Raspberry Pi. He’s added percussion using K’NEX instruments and 9g servos, which we think is a nice touch. It can be powered via LiPo or from the wall, and [Jeremy] baked in protection against blowing up the battery. As he explains in the tour video after the break, the box is clamped to a wooden table to provide richer sound.

[Jeremy]’s favorite part of the build was enclosing the thing as it was his first time using panel-mount components. Stick around to see a walk-through of the guts and a second video demonstrating its musical prowess.

Continue reading “Sweet Stepper Of [Jeremy]’s Rocks Out With Its Box Out”

Using A Theremin For Medical Applications

[Eswar] is not an ordinary 16 years old boy. He figured out a noninvasive way to measure breathing in hospitals for less than $50. He is using a theremin to measure the rise and fall of a patient’s chest. For our curious readers, this touch-less instrument was invented back in 1929 by the Russian inventor [Leon Theremin]. It uses the heterodyne principle and two oscillators to generate an audio signal. One electronic oscillator creates an inaudible high pitch tone while another variable oscillator is changed by adding capacitance to an antenna.

As you can guess the space between the patient’s chest and the antennas placed around the bed forms a tiny capacitor which varies when exhaling. With three simple TTL chips and a little guessing [Eswar] had a working prototype ready to be implemented in the real world. If you’re interested in theremin, we invite you to see one of our previous articles on how to make one in a few minutes with a soda can.

Artistic Guitar Practice Amp

Sweet Guitar Practice Amp Is A Literal Work Of Art

Check out this odd different looking guitar practice amp. It looks like a professionally manufactured product but it certainly is not. [Bradley] made it himself, not just a little bit of it either, all of it.

One of the first things you notice is the quilted maple wood grain of the case. There is no veneer here, this started out as a solid maple block. The front radius was shaped and the recesses for the control knobs and input jack were bored out using a forstner bit. The case was sanded smooth and several coats of high gloss tung oil was rubbed on to give the wood a perfect finish. A small piece of grill cloth protects the speaker while adding a little more class to the amp. The bottom of the case is actually a cover for a computer hard drive. A rectangular hole cut in the hard drive cover makes way for a 9 volt battery compartment.

Artistic Guitar Practice Amp

There are two control potentiometers, one for volume and one for gain. Any old knobs wouldn’t do for this project. [Bradley] knurled and turned his own aluminum knobs and they look awesome! The units power is turned on when the guitar cord is plugged in. An LED not only indicates that the power is on but it also gets brighter with the volume input from the guitar. The LED also pulses if two strings are out of tune with each other giving the guitarist an opportunity to tune one of the strings until the LED stops pulsing. When it is time for some private jamming headphones can be plugged into the amp and doing so cuts power to the speaker.

The electronic circuitry is [Bradley’s] design also, but unfortunately he doesn’t share the schematic. I suppose he wants to keep his amp one-of-a-kind.

DIY pickup winder

Pro-Quality Pickup Winder You Can Make At Home

A lot of people find the art of building a guitar to be a worth while and pleasurable hobby. The task can be as easy as buying pre-made parts and assembling the guitar or as complicated as starting with just a piece of wood. Even advanced guitar builders normally do not get involved enough to wind their own pickups as it can be a tedious and labor intensive task. A low-end professional pickup winder can be purchased for about $450 which is certainly not economical for the hobbyist. [Doug] is one of those folks that wanted a pickup winder but didn’t want to shell out the big bucks. So what did he do? Build his own, of course.

If [Doug] was going to build a winder he was going to do it right, with all the features to make pickup winding as quick and painless as possible. The winder needed to be fast, count the windings and stop after a pre-programmed amount of revolutions. To keep this machine safe and reliable while maintaining the ability to spin quickly, [Doug] chose to base the machine on an off-the-shelf wood lathe since they are sturdy and made to spin at high speeds. The lathe is equipped with a face plate where the pickup is mounted.

Once the pickup is mounted to the face plate, the desired amount of turns is programmed into a digital counter that receives a signal from an opto switch and encoder disk attached to the lathe spindle. The motor speed is manually controlled by a user-adjustable potentiometer. There is also a stand alone tachometer that gives speed feedback to the user. Once the counter reaches the pre-programmed limit, it trips a relay that cuts power to the motor. This way the amount of windings can be precisely controlled. There is even a switch that changes the motor direction for reverse winding humbuckers without the need to remove and flip over the pickup.

Continue reading “Pro-Quality Pickup Winder You Can Make At Home”

Let The Bass Cannon Kick It!!

If you’ve ever found yourself immersed in the wild realm of electronic dance music, then chances are you’ve probably heard [Flux Pavilion]’s dubstep banger ‘Bass Cannon.’ The music video released for the track shows [Flux] and his minion [Doctor P] performing twisted audio experiments on unexpecting research candidates by blasting them in the face with strong waves of sound vibrations, which blew back the hair of the people strapped to the chair. The audio trials took place inside what looks to be a warehouse filled to the brim with speakers, heavy duty subs, and sound boards; making it more like a ‘room of bass’ rather than a bass cannon itself. Yet, it inspired one of Hackaday’s Alum to literally create a bass cannon himself. And as you can see in the video below, his device packs quite a punch.

Most of us know [Adam Munich] as the guy who built this portable x-ray machine that could look through just about anything. He’s also built a nuclear bomb detector and has documented several radiation safety techniques, but every once in a while he decides to make something utterly ridiculous like this! He describes his homemade bass cannon as having a variety of fun and exciting uses including a mobile party on one’s shoulders, a way to frizz your hair, or an electrifying method to scare the neighbors.

Continue reading “Let The Bass Cannon Kick It!!”