An Introduction To Series Elastic Actuators For A Robot

Perhaps one of the most interesting YouTube channels to follow right now is [James Bruton’s] channel for XRobots.co.uk — he’s a prop maker, a toy maker — and as his site implies, a robotics guru. Put them altogether and watch him make some of your childhood dream projects come true. He’s currently working on a real-life robot creation of Ultron, and he’s messing around with Series Elastic Actuators right now.

In an earlier part of the project, he built a small robotic arm to demonstrate the motion capture suit he’s going to use to control Ultron (if all goes according to plan he’ll have a walking robot following his every move!). He showed how the basic RC servo motor driven arm works, and how it probably wouldn’t be the best to scale up since it has no external feedback — if he has a full size Ultron robot swinging its arms around, someone could get hurt.

Which led him to designing his own prototype Series Elastic Actuators using an Arduino, potentiometers, some elastics, and a geared DC motor.

Continue reading “An Introduction To Series Elastic Actuators For A Robot”

A Fireside Chat With Grant Imahara

Grant Imahara was on hand at the Hackaday SuperConference for a fireside chat led by Sophi Kravitz and Chris Gammell. You know Grant from his work on the television show MythBusters. He holds a Bachelor’s degree in Electrical Engineering, is known for his work on robots and special effects, he’s the engineer behind the Energizer Bunny, and has even competed on BattleBots. Over the past year he joined with Mouser Electronics to promote engineering through their Empowering Innovation Together campaign. Mouser was one of the sponsors of the 2015 Hackaday Prize and they were happy to work with Grant to make this appearance possible.

Continue reading “A Fireside Chat With Grant Imahara”

Because Art: Can Machines Be Creative?

You’re walking through a gallery and stop to take in two seemingly unrelated pieces hanging side-by-side. One of them is a drawing of a bird, rendered with such precision its feathers could easily pop off the paper. The other is a sketch of what seems to be the same bird, however it’s nearly unrecognizable due to inconsistent line quality and parts that are entirely missing.

This article was written for the Omnibus vol #02 Order yours now
This article was written for the Omnibus vol #02
Order yours now

In staring at the photo-real drawing of the perfect bird, you marvel over the technical ability required to produce it. You also study the sloppy sketch just as long, picking out each one of its flaws, yet decide you like the image of the strange bird because the errors are interesting to you.

When you lean forward to read the title card posted on the wall between them, you’re shocked to learn that the two drastically different images were made by the same artist; not the person them self, but a machine they built to create both drawings in two different styles.

As an illustrator, I’m fascinated by drawing machines because their purpose is to emulate an act which has always been a highly personal form of self expression for me. Drawing machines and their creators are in a sense my peers.

Continue reading “Because Art: Can Machines Be Creative?”

A Short History Of AI, And Why It’s Heading In The Wrong Direction

Sir Winston Churchill often spoke of World War 2 as the “Wizard War”. Both the Allies and Axis powers were in a race to gain the electronic advantage over each other on the battlefield. Many technologies were born during this time – one of them being the ability to decipher coded messages. The devices that were able to achieve this feat were the precursors to the modern computer. In 1946, the US Military developed the ENIAC, or Electronic Numerical Integrator And Computer. Using over 17,000 vacuum tubes, the ENIAC was a few orders of magnitude faster than all previous electro-mechanical computers. The part that excited many scientists, however, was that it was programmable. It was the notion of a programmable computer that would give rise to the ai_05idea of artificial intelligence (AI).

As time marched forward, computers became smaller and faster. The invention of the transistor semiconductor gave rise to the microprocessor, which accelerated the development of computer programming. AI began to pick up steam, and pundits began to make grand claims of how computer intelligence would soon surpass our own. Programs like ELIZA and Blocks World fascinated the public and certainly gave the perception that when computers became faster, as they surely would in the future, they would be able to think like humans do.

But it soon became clear that this would not be the case. While these and many other AI programs were good at what they did, neither they, or their algorithms were adaptable. They were ‘smart’ at their particular task, and could even be considered intelligent judging from their behavior, but they had no understanding of the task, and didn’t hold a candle to the intellectual capabilities of even a typical lab rat, let alone a human.

Continue reading “A Short History Of AI, And Why It’s Heading In The Wrong Direction”

A Robotic Wheatley Replica created by Evie Bee

Robotic Wheatley From Portal 2

It’s been over 4 years since Portal 2 launched, but Wheatley, the AI character with a British accent, remains a captivating character. [Evie Bee] built a Wheatley replica complete with sound, movement, and one glowing eye.

The body of Wheatley is made out of blue insulation foam, also called XPS foam, laminated together with UHU Polyurethane glue. This formed a sphere, which was then cut into a detailed body. Papier mache clay was used to strengthen the thin foam.

The electronics for this build provide light, motion, and sound. The eye is moved by a total of 3 Arduino controlled servos: two for the movement of the eye, and one to allow it to open and close. Movement is controlled by two joysticks. Sound is provided by the Adafruit Sound Board, which connects to a speaker and a Velleman Sound to Light Kit. This kit controls the LEDs that light the eye, making it react to the voice of Wheatley.

You can watch this Wheatley rant at you after the break. Of course if you’re going to have a Wheatley you need a GLaDOS potato as well.

Continue reading “Robotic Wheatley From Portal 2”

Robotic Tabletop

Remember pin art? That’s the little box full of pins that you can push something into and the pins take on the shape. You usually use your hand, but any small object works (including, if you are brave enough, your face). [Sean Follmer] (formerly at the MIT Media Lab) developed the reverse of this: a surface made of pins driven by motors. Under computer control, the surface can take on shapes all by itself.

The square pins can be seen in the video below moving and manipulating blocks and using them to build structures out of the blocks. By using the right sequence of pin motions, the blocks can be flipped and even stacked. Magnetic blocks offer even more options.

Continue reading “Robotic Tabletop”

Molecular Motor Drives Nano Submarine

Technology keeps making things smaller, but this is ridiculous. Scientists at Rice University in Houston have just made a tiny submarine with a molecular motor. They call it a unimolecular submersible nanomachine (USN), because it is composed of a single molecule made up of 244 atoms. The really smart bit comes from how it is driven: when the molecule absorbs a photon of light, one of the bonds that holds it together becomes more flexible, and the tail spins a quarter of a rotation to attach to another atom and reach the preferred lower energy state. This motion moves the molecule, and the process repeats. This happens millions of times a second.

I wouldn’t put down a deposit on a nanosub quite yet, though: the motion is random, as there is no way to steer the molecule at present. The researchers figured out that it behaves this way by analyzing the way that the molecule diffuses, because these molecules diffuse 25 per cent quicker with the light source than without.  Nope, not very practical, but it is a neat bit of molecular hackery.