Behold Self-Synchronizing, Air-Flopping Limbs That Hop And Swim

Dutch research institute [AMOLF] shows off a small robot capable of walking, hopping, and swimming without any separate control system. The limbs synchronize thanks to the physical interplay between the robot’s design and its environment. There are some great videos on that project page, so be sure to check it out.

A kinked soft tube oscillates when supplied with continuous air.

Powered by a continuous stream of air blown into soft, kinked tubular limbs, the legs oscillate much like the eye-catching “tube man” many of us have seen by roadsides. At first it’s chaotic, but the movements rapidly synchronize into a meaningful rhythm that self-synchronizes and adapts. On land, the robot does a sort of hopping gait. In water, it becomes a paddling motion. The result in both cases is a fast little robot that does it all without any actual control system, relying on physics.

You can watch it in action in the video, embedded below. The full article “Physical synchronization of soft self-oscillating limbs for fast and autonomous locomotion” is also available.

Gait control is typically a nontrivial problem in robotics, but it doesn’t necessarily require a separate control system. Things like BEAM robotics and even the humble bristlebot demonstrate the ability for relatively complex behavior and locomotion to result from nothing more than the careful arrangement of otherwise simple elements.

Continue reading “Behold Self-Synchronizing, Air-Flopping Limbs That Hop And Swim”

Wire-frame image of gearbox, setup as a differential

Roller Gearbox Allows For New Angles In Robotics

DIY mechatronics always has some unique challenges when relying on simple tools. 3D printing enables some great abilities but high precision gearboxes are still a difficult problem for many. Answering this problem, [Sergei Mishin] has developed a very interesting gearbox solution based on a research paper looking into simple rollers instead of traditional gears. The unique attributes of the design come from the ability to have a compact angled gearbox similar to a bevel gearbox.

Multiple rollers rest on a simple shaft allowing each roller to have independent rotation. This is important because having a circular crown gear for angled transmission creates different rotation speeds. In [Sergei]’s testing, he found that his example gearbox could withstand 9 Nm with the actual adapter breaking before the gearbox showing decent strength.

Continue reading “Roller Gearbox Allows For New Angles In Robotics”

[Austin Blake] sitting on line follower cart in garage

Honey, I Blew Up The Line Follower Robot

Some readers may recall building a line-following robot during their school days. Involving some IR LEDs, perhaps a bit of LEGO, and plenty of trial-and-error, it was fun on a tiny scale. Now imagine that—but rideable. That’s exactly what [Austin Blake] did, scaling up a classroom robotics staple into a full-size vehicle you can actually sit on.

The robot uses a whopping 32 IR sensors to follow a black line across a concrete workshop floor, adjusting its path using a steering motor salvaged from a power wheelchair. An Arduino Mega Pro Mini handles the logic, sending PWM signals to a DIY servo. The chassis consists of a modified Crazy Cart, selected for its absurdly tight turning radius. With each prototype iteration, [Blake] improved sensor precision and motor control, turning a bumpy ride into a smooth glide.

The IR sensor array, which on the palm-sized vehicle consisted of just a handful of components, evolved into a PCB-backed bar nearly 0.5 meters wide. Potentiometer tuning was a fiddly affair, but worth it. Crashes? Sure. But the kind that makes you grin like your teenage self. If it looks like fun, you could either build one yourself, or upgrade a similar LEGO project.
Continue reading “Honey, I Blew Up The Line Follower Robot”

A human hand is shown in the bottom right corner of the picture, holding one end of a pencil. A white, segmented, mechanical tentacle extends from the bottom left corner of the image and wraps around the other end of the pencil.

3D Printed Cable-Driven Mechanisms – Some Strings Attached

One of the most basic problems with robotic arms and similar systems is keeping the weight down, as more weight requires a more rigid frame and stronger actuators. Cable-driven systems are a classic solution, and a team of researchers from MIT and Zhejiang University recently shared some techniques for designing fully 3D printed cable-driven mechanisms.

The researchers developed a set of four primitive motion components: a bending component, a coil, screw-like, and a compressive component. These components can work together in series or parallel to make much more complicated structures. To demonstrate, the researchers designed a gripping tentacle, a bird’s claw, and a lizard-like walking robot, but much more complicated structures are certainly possible. Additionally, since the cable itself is printed, it can have extra features, such as a one-way ratcheting mechanism or bumps for haptic feedback.

These printed cables are the most novel aspect of the project, and required significant fine-tuning to work properly. To have an advantage over manually-assembled cable-driven systems, they needed to be print-in-place. This required special printer settings to avoid delamination between layers of the cable, cables sticking to other components, or cables getting stuck in the mechanism’s joints. After some experiments, the researchers found that nylon filament gives the best balance between cable strength and flexibility, while not adhering tightly to the PLA structure.

We’ve seen cable-driven systems here a few times before. If you’re interested in a deeper dive, we’ve covered that too.

Continue reading “3D Printed Cable-Driven Mechanisms – Some Strings Attached”

Gaze Upon Robby The Robot’s Mechanical Intricacy

One might be tempted to think that re-creating a film robot from the 1950s would be easy given all the tools and technology available to the modern hobbyist, but as [Mike Ogrinz]’s quest to re-create Robby the Robot shows us, there is a lot moving around inside that domed head, and requires careful and clever work.

The “dome gyros” are just one of the complex assemblies, improved over the original design with the addition of things like bearings.

Just as one example, topping Robby’s head is a mechanical assembly known as the dome gyros. It looks simple, but as the video (embedded below) shows, re-creating it involves a load of moving parts and looks like a fantastic amount of work has gone into it. At least bearings are inexpensive and common nowadays, and not having to meet film deadlines also means one can afford to design things in a way that allows for easier disassembly and maintenance.

Robby the Robot first appeared in the 1956 film Forbidden Planet and went on to appear in other movies and television programs. Robby went up for auction in 2017 and luckily [Mike] was able to take tons of reference photos. Combined with other enthusiasts’ efforts, his replica is shaping up nicely.

We’ve seen [Mike]’s work before when he shared his radioactive Night Blossoms which will glow for decades to come. His work on Robby looks amazing, and we can’t wait to see how it progresses.

Continue reading “Gaze Upon Robby The Robot’s Mechanical Intricacy”

Robot Gets A DIY Pneumatic Gripper Upgrade

[Tazer] built a small desktop-sized robotic arm, and it was more or less functional. However, he wanted to improve its ability to pick things up, and attaching a pneumatic gripper seemed like the perfect way to achieve that. Thus began the build!

The concept of [Tazer]’s pneumatic gripper is simple enough. When the pliable silicone gripper is filled with air, the back half is free to expand, while the inner section is limited in its expansion thanks to fabric included in the structure. This causes the gripper to deform in such a way that it folds around as it fills with air, which lets it pick up objects. [Tazer] designed the gripper so that that could be cast in silicone using 3D printed molds. It’s paired with a 3D printed manifold which delivers air to open and close the gripper as needed. Mounted on the end of [Tazer]’s robotic arm, it’s capable of lifting small objects quite well.

It’s a fun build, particularly for the lovely sounds of silicone parts being ripped out of their 3D printed molds. Proper ASMR grade stuff, here. We’ve also seen some other great work on pneumatic robot grippers over the years.

Continue reading “Robot Gets A DIY Pneumatic Gripper Upgrade”

China Hosts Robot Marathon

China played host to what, presumably, was the world’s first robot and human half-marathon. You can check out the action and the Tiangong Ultra robot that won in the video below. The event took place in Beijing and spanned 21.1 km. There was, however, a barrier between lanes for humans and machines.

The human rules were the same as you’d expect, but the robots did need a few concessions, such as battery swap stops. The winning ‘bot crossed the finish line in just over 160 minutes. However, there were awards for endurance, gait design, and design innovation.

Continue reading “China Hosts Robot Marathon”