It’s A Marble Clock, But Not As We Know It

[Ivan Miranda] is taking a very interesting approach to a marble clock. His design is a huge assembly that uses black and white marbles to create a (sort of) dot matrix display. It’s part kinetic art and part digital clock, all driven by marbles.

Here’s how it works: black and white marbles feed into a big elevator. This elevator lifts marbles to the top of the curved runs that make up the biggest part of the device. The horizontal area at the bottom is where the time is shown, with white and black marbles making up the numerical display. But how to make sure the white marbles and black marbles go in the right order?

The solution to that is simple. Marbles feed into the elevator in an unpredictable order. An array of sensors detects the color of each marble. Solenoids simply eject any marble that isn’t in the right place. For example, if the next marble for track n needs to be white, then simply kick out any black marbles in that position until there’s a white one. Simple, effective, and guarantees plenty of mesmerizing moving parts.

Of course, this means that marble ejection and marble color sensing need to be utterly reliable, and [Ivan] ran into problems with both. Marble ejection took some careful component testing and selection to get the right solenoids.  Color sensing (as well as detecting empty spaces) settled on IR-based sensors commonly used in line-following robots.

You can watch the clock in action in the video embedded below just under the page break. We recommend giving it a look, because [Ivan] does a great job of showing all of the little challenges that reared their heads, and how he addressed them. There are still a few things to address, but he expects to have those licked by the next video. In the meantime, [Ivan] asks that if anyone knows a source for high quality glass marbles in bulk, please let him know. Low quality ones vary in size and tend to get stuck.

Marble clocks are great expressions of creativity, especially now that 3D printing is common. We love clock hacks, so if you ever create or run across a good one, let us know about it!

Continue reading “It’s A Marble Clock, But Not As We Know It”

Why You’ve Never Heard About Nintendo’s U-Force

90’s kids think that the Power Glove was the coolest game peripheral of the epoch. We might have thought so too, until we heard about Don’t Touch: The Story of the U-Force from [The Gaming Historian].

The device itself folded up like a laptop, and on the two surfaces had four IR LED/sensor pairs. All of these combined would localize your fist in space for playing Mike Tyson’s Punch Out, or would work with various other passive controller add-ons like a flight yoke for playing Top Gun. (One of the coolest bits is the flip-out IR reflectors triggered by the buttons in the yoke.)

All-in-all, the video’s take is that a number of factors doomed the U-Force to play second fiddle to the Power Glove. Battling Mattel’s marketing prowess is obvious, but other things like manufacturing problems due to bad hinges and inconsistent IR sensors delayed release and added cost. In the end, though, [Dave Capper], the U-Force’s inventor, puts it down simply to non-convincing gameplay. There were no blockbuster games that used it to its full potential.

At the time, the U-Force utilized more IR LEDs than any other consumer electronic device.

We think there’s interesting hacker potential in a simple interface like this. Perhaps its biggest Achilles heel outside of the lack of a killer application was the fact that it required calibration. We can imagine all sorts of awesome interactions, and we’re not afraid of a little tweaking. Or maybe we would update the sensors to something more modern, like those inexpensive time-of-flight distance units.

Thanks [Karl Koscher] for bringing this documentary to our attention in the comments about the very similarly interesting laser theremin project we featured last year. It’s definitely opened our eyes to an old interaction of the past that would seem no less magical today.

Continue reading “Why You’ve Never Heard About Nintendo’s U-Force”

An Automatic Label Dispenser For Quicker Stickers

If you have any kind of business, chances are it involves stickers at some point in the process. More accurately it involves you peeling the backs off of sticker after sticker, slowly wasting time and working your way toward a repetitive stress injury. Why do that to yourself when you could have a machine do it for you?

That’s exactly the thinking behind [Mr Innovative]’s automatic label dispensing machine. All he has to do is load up the roll of labels, dial in the length of each label, and away the machine goes, advancing and dispensing and taking up the empty paper all at once. In fact, that’s how it works: the take-up reel is on the shaft of a NEMA-17 stepper motor, which gets its instructions from an Arduino Nano and an A4988 motor driver. Our favorite part is the IR sensor located underneath the sticker that’s ready to take — the machine doesn’t feed another until it senses that you’ve taken the previous sticker. We stuck the demo and build video after the break.

Our other favorite thing about this build is that [Mr Innovative] seems to have used the same PCB as his freaky fast bobbin winder.

Continue reading “An Automatic Label Dispenser For Quicker Stickers”

Tiptoe Through The Tulip Mania

Spring is headed back toward the northern hemisphere, and we’ll soon see brilliant tulips waking up from their dirt naps to dot the thawing landscape with vibrant hues. These harbingers of spring are closely associated with the Netherlands, but they are actually native to Turkey and central Asia, and weren’t brought to Europe until the 1500s. Tulips became so immensely popular that the market reached what is considered the first speculative financial fever pitch, and crashed hard in 1637.

This electromechanical parlor game arranges the tulips with another artifact of the Dutch Golden Age —  hand-painted Delft tiles designed to line fireplaces. [BuiltByBlatt] made all 114 of his on a CNC with a paint pen. To play the game, you roll a small ball toward a row of holes with different point values. Each hole has a break beam detector so the Raspberry Pi knows what you scored.

There’s also a rotating bonus hole that changes based on how many balls are left. As your score goes up, Titus the Tulip works his way to the right. It seems like it’d be fairly easy to hit the 5-point hole in the middle, but the tiles give it a horizontal Pachinko feel that makes it move less predictably. Slip into your clogs and check it out after the break.

We love the heavy clacks of electromechanical contraptions, especially old pinball machines. You can even tear ’em down and build them into other games.

Continue reading “Tiptoe Through The Tulip Mania”

This Super Realistic LED Candle Is Smoking Hot

Over the last few years, LED candles have become increasingly common; and for good reason. From a distance a decent LED candle is a pretty convincing facsimile for the real thing, providing a low flickering glow without that annoying risk of burning your house down. But there’s something to be said for the experience of a real candle; such as that puff of fragrant smoke you get when you blow one out.

Which is why [Keith] set out on an epic three year quest to build the most realistic LED candle possible, with a specific focus on the features that commercial offerings lack. So not only does it use real wax as a diffuser for the LEDs, but you’re able to “light” it with an actual match. It even ejects a realistic bit of smoke when its microphone detects you’ve blown into it. Ironically, its ability to generate smoke means it doesn’t completely remove the possibility of it setting your house on fire if left unattended, but we suppose that’s the price you pay for authenticity.

As you might have gathered by now, [Keith] is pretty serious about this stuff, and has gone to great lengths to document his candle’s long development process. If you’d care to build a similar candle, his written documentation as well as the video after the break will certainly get you on the right track. He’s even broken the design down into “milestones” of increasing complexity, so for example if you don’t care about the smoking aspect of the candle you can just skip that part of the build.

So what did [Keith] put into his ultimate LED candle? In the most basic form, the electronics consist of a Arduino Pro Mini and a chunk of RGB WS2812B strip holding six LEDs. Add in an IR sensor if you want the candle to be able to detect the presence of a match, and a microphone if you want to be able to blow into the candle to turn it off. Things only get tricky if you want to go full smoke, and let’s be honest, you want to go full smoke.

To safely produce a puff of fragrant smoke, [Keith] is using a coil of 28 gauge wire wrapped around the wick of a “Tiki Torch”, and a beefy enough power supply and MOSFET to get it nice and hot. The wick is injected with his own blend of vegetable glycerin and aromatic oil, and when the coil is fired up it produces an impressive amount of light gray smoke that carries the scent of whatever oil you add. Even if you’re not currently on the hunt for the ultimate electronic candle, it’s a neat little implementation that could be used come Halloween.

You might be surprised to learn that LED candles are a rather popular project within the hacking community. From the exceptionally simple to the exceedingly complex, we’ve seen an impressive array of electronic candles over the years. Perfect for setting the mood when listening to the smooth sounds of the latest Hackaday podcast episode. Continue reading “This Super Realistic LED Candle Is Smoking Hot”

Use The Force To Turn On This Lamp

Holocrons are holographic data storage devices used in the Star Wars universe by both Jedi and Sith as teaching devices or for storing valuable information. After the fall of the Jedi, they became rare and closely guarded artifacts. [DaveClarke] built one to light the room.

[DaveClarke] built the lamp around a Particle Photon – a STM32 ARM-M0 based microcontroller with a Cypress wifi chip. All [Dave] needed for the workings were an IR proximity sensor, a servo and a bunch of super-bright white LEDs. When the sensor detects something, it starts up the system. The servo rotates a gear which raises the lamp and fades in the LEDs. The next time the sensor detects something, the servo lowers the lamp and the lights begin to fade out. And since the Photon is connected to the cloud, the system can be accessed with a web interface as well.

Okay, so it’s just an IR sensor detecting reflected infrared light and not the Force that’s used to turn it on, but it’s still pretty cool. There are plenty of pictures and videos at [DaveClarke]’s site, along with a schematic, 3D printer designs, and the source code. The whole thing was designed using Autodesk Fusion 360 and 3D printed in about 30 hours and press-fits together. A very simple yet clever design. There have been some other great lamps on the site, like this blossoming flower lamp or this laser cut lamp with which also has a unique switch.

Continue reading “Use The Force To Turn On This Lamp”

The Infrared Theremin

The traditional theremin is more or less an audio oscillator with two metal rods. Using proximity sensing, one rod controls the pitch of the oscillator and the other controls the volume. [Teodor Costachiou] apparently asked himself the excellent question: Why does the proximity sensor have to use capacitance? The result is an Arduino-based theremin that uses IR sensors to determine hand position.

[Teodor] used a particular type of Arduino–the Flip and Click–because he wanted to use Click boards for the IR sensors and also to generate sound via an MP3 board based around a VS1053. The trick is that the VS1053 has a realtime MIDI mode, and that’s how this Theremin makes it tones.

Continue reading “The Infrared Theremin”