Intelligent Autonomous Vehicle Makes It To Maker Faire

A few guys from Rutgers showed up at Maker Faire with Navi, their vehicle for the 2012 Intelligent Ground Vehicle Competition. Powered by two huge lead acid batteries, Navi features enough high-end hardware to hopefully make it through or around just about any terrain.

Loaded up with a laser range finder, a stereo camera setup, compass, GPS receiver, and a pair of motors capable of pulling 40A, Navi has the all the hardware sensors required to make it around a track with no human intervention. Everything is controlled by a small netbook underneath the control panel, itself loaded up with enough switches and an 8×32 LED matrix to be utterly incomprehensible.

In the videos after the break, the guys from Rutgers show off the systems that went into Navi. There’s also a video showing off Navi’s suspension, an impressive custom-built wishbone setup that will hopefully keep Navi on an even keel throughout the competition.

Also of note: A PDF design report for Navi and Navi’s own blog.

Continue reading “Intelligent Autonomous Vehicle Makes It To Maker Faire”

Professional Looking Dog Robot Was Actually [Martin’s] Master’s Thesis

If you think this thing looks good you should see it move. [Martin Smith] hit a home run on the project, which was his Master’s Thesis. Fifteen servo motors provide a way for the bot to move around. Having been modeled after a small canine the gait is very realistic. The tail is even functional, acting as a counterweight when moving the legs.

The project was meticulously built in a 3D environment before undertaking any physical assembly. The mechanical parts are all either milled from aluminum or 3D printed. Two mBed boards mounted on its back allow it to interact with its environment. One of them handles image processing, the other drives the array of motors. And of course it doesn’t hurt that he built some Larson Scanners in as eyes.

Don’t miss the video after the break which shows off the entire project from planning to demonstration. We can’t help but be reminded of the rat-thing from Snow Crash.

Continue reading “Professional Looking Dog Robot Was Actually [Martin’s] Master’s Thesis”

Whatever A Phobia Of Fingers Is Called, This Is It.

[youtube=http://www.youtube.com/watch?v=7LSXvhLKjCU&w=470]

Touched is a project by [Rebecca Strauss] that integrates servos, strings, and felt into a horrifying kinetic sculpture made up of a dozen mechanical fingers straight from a Boschian nightmare.

The fingers are made up of segments of wood articulated with the help of a small string. Each pair of fingers is controlled by a single servo, and the tips of each pair of fingers is controlled by a second servo.

After covering them in felt, [Rebecca] wrapped conductive thread around each of the fingers. When some of the fingers are touched, they all recoil as if controlled by a demon living just under a mountain of felt.

[Rebecca] brought in another kinetic sculpture using her servo controlled fingers; in the video up at the top and after the break, you can see the inner workings of this floor-mounted version. When the IR proximity sensor goes off, the fingers recoil but can be coaxed out again by gently stroking one of the phalanges.

Continue reading “Whatever A Phobia Of Fingers Is Called, This Is It.”

L.I.O.S.: The Ten-ish Dollar Robot.

We love cheap stuff here. Who doesn’t? [Oscar Rodriguez Parra] does too, and wrote in to show us his super cheapey robot L.I.O.S. The build was for the AFRON design challenge, which involves building a 10 dollar robot to teach students robotics. The winners of the challenge were neat and all, but they all look too fancy flaunting their molded plastics and electronics breadboards.

[Oscar’s] design is super simple, LDRs as eyes, a PIC12F683 to do the brainin, LEDs for indicators and a couple modded servos to drive the wheels. An extraordinarily complex cardboard flap roller helps the cart turn, but probably isn’t going to see much aside from smooth flooring. The electronics are mounted using one of our favorite techniques, the paper perf board (very similar to the substrate free technique).

Check out the video after the jump to see LIOS in action. This is an excellent introduction to robotics for any classroom. Thanks [Oscar]!

Continue reading “L.I.O.S.: The Ten-ish Dollar Robot.”

Wii Nunchuck Controlled Robot Exhibits Rock Solid Balancing

[Willy Wampa] is showing off his self-balancing robot. What strikes us about the build is how well tuned his feedback loop seems to be. In the video after the break you will see that there is absolutely no visible oscillation used to keep its balance.

The parts used are quite easy to obtain. The acrylic mounting plates are his wife’s design and were custom cut through the Pololu service. They were also the source of the gear motors. He’s using a SparkFun IMU with an Arduino and a motor shield. He first posted about the build about a month ago, but the new revision switches to a Pololu motor driver shield which he says works much better, and adds control via a wireless Wii Nunchuck.

The PID loop which gives it that remarkably solid upright stance is from a library written by [Brett Beauregard]. Once again the concept of open source lets us build great things by standing on the shoulders of others.

Continue reading “Wii Nunchuck Controlled Robot Exhibits Rock Solid Balancing”

Making Your Anime Papercraft Move To The Music

This anime character is dancing to the music thanks to some animatronic tricks which [Scott Harden] put together. She dances perfectly, exhibiting different arm and head movements at just the right time. The secret to the synchronization is actually in the right channel of the audio being played.

The character in question is from an Internet meme called the Leekspin song. [Scott] reproduced it on some foam board, adding a servo to one arm to do the leek spinning, and another to move the head. These are both driven by an ATtiny44. All of the movements have been preprogrammed to go along with the audio track. But he needed a way to synchronize the beginning of each action set. The solution was to re-encode the audio with one track devoted to a set of sine wave pulses. The right audio channel feeds to the AVR chip via an LM741 opamp. Each sine wave triggers the AVR to execute the next dance move in the sequence. You can see the demo video for the project after the break.

Continue reading “Making Your Anime Papercraft Move To The Music”

Qube Robots Use Well-designed Laser-cut Acrylic

These robot cubes, called BOXZ, use an interesting interlocking part design to mount and protect the parts within. But to really make them pop you need to color and apply your own papercraft skins.

The actual hardware is quite simple. They’ve used an Arduino, along with motor driver and Bluetooth shields, to control a set of geared DC motors. There’s a battery pack which holds four AA cells and a pair of servo motors which seem to be there to act as arms. This base can then be adorned with sensors to add functionality (line following, wall following, obstacle avoidance, etc.).

Despite the simple appearance of the cube, the chassis is the most complicated part. It uses sixteen pieces of acrylic, but they may also be hand cut from cardboard by printing out templates and gluing them onto the material. The parts are designed with interlocking tabs which we often see used on laser-cut wooden box parts.

We’ve embedded the video presentation of BOXZ after the break.

Continue reading “Qube Robots Use Well-designed Laser-cut Acrylic”