Robot, Sudo Fold My Laundry

[Ty Palowski] doesn’t like folding his many shirts. He saw one of those boards on TV that supposedly simplifies folding, but it does require you to manually move the board. That just won’t do, so [Ty] motorized it to create a shirt folding robot.

The board idea is nothing new, and probably many people wouldn’t mind the simple operation required, but what else are you going to do with your 3D printer but make motor mounts for a shirt folding machine? The folding board is, of course, too big for 3D printing so he made that part out of cardboard at first and then what looks like foam board.

Continue reading “Robot, Sudo Fold My Laundry”

The Mother(board) Of All CNC Controllers

If you’re building a CNC machine from scratch, the number of decisions you have to make is nearly boundless. Metal or wood construction? Welded or bolted? Timing belts or lead screws? And even once the mechanical bits are sorted, you still face a universe of choices in terms of control electronics. That’s where something like this modular CNC controller could really prove to be a game-changer.

The idea behind [Barton Dring]’s latest creation started with his port of GRBL to the ESP32. In fact, the current controller bears a strong family resemblance to his version 1.0 dev board, with a few conspicuous and intriguing additions. First, everything is modular — the main PCB is basically a motherboard with little more than a 5-volt power supply and some housekeeping electronics, plus a lot of headers. There’s support for up to six channels of steppers, either directly on the board with Pololu-style modules or as external drivers using pluggable screw terminal blocks. There’s also room for five IO modules; the current collection of modules includes a four-channel switch input, a relay output, an RS-485 module and a 0-10-V interface for talking to a variable frequency drive (VFD) spindle controllers, and buffered 5-V output module. The best part is that the IO module spec is completely open, so designing custom modules should be a snap.

The video below gives a quick tour of the controller. We’re really impressed with the thought that went into this, and we’ll venture a guess that having something like this available is going to kickstart a lot of stalled CNC machine projects. We can think of one shop that finally lost its last excuse for making the move.

Continue reading “The Mother(board) Of All CNC Controllers”

A Robotic Stylist For Your Lockdown Lengthened Locks

It’s perhaps easy to think that despite the rapid acceleration of technology that there are certain jobs that will never be automated out of existence. Generally the job said to be robot-proof is the one held by the person making the proclamation, we notice. But certainly the job of cutting and styling people’s hair could never be done by a robot, right?

We wouldn’t bet the farm on it, although judging by [Shane Wighton]’s quarantine haircut robot, it’ll be a while before the stylists of the world will be on the dole. Said to have sprung from the need to trim his boyishly long hair, the contraption is an object lesson recreating the subtle manual skills a stylist brings to every head they work on — there’s a reason it takes 1,500 hours or more of training to get a license, after all. [Shane] discovered this early, and realized that exactly replicating the manual dexterity of human hands was a non-starter. His cutting head uses a vacuum to stand the hair upright, 3D-printed fingers to grip a small bundle of hair, and servo-driven scissors to cut it to length. The angle of attack of the scissors can be adjusted through multiple axes, and the entire thing rotates on a hell-no-I’m-not-putting-my-head-in-that-thing mechanism.

To his great credit, [Shane] braved the machine as customer zero, after only a few non-conclusive life-safety tests with a dummy head and wig. We won’t spoil the ending, but suffice it to say that the thing actually worked with no bloodshed and only minimal damage to [Shane]’s style. The long-suffering [Mrs. Wighton], however, was not convinced to take a test drive.

In all seriousness, kudos to [Shane] for attacking such a complex problem. We love what he’s doing with his builds, like his basketball catcher and his robo-golf club, and we’re looking forward to more.

Continue reading “A Robotic Stylist For Your Lockdown Lengthened Locks”

SoftBank Robots Pinch Hit For Baseball Cheerleaders

Grand venues of spectacle to entertain audiences has long been a part of history, but such tradition is highly problematic at the moment in the light of the pandemic. Some sports leagues are testing the waters with a soft restart by playing only to a broadcast audience, leaving the stadium empty. Many experiments are in progress trying to liven up an empty stadium and this is where SoftBank saw an opportunity: as a multinational conglomerate that has both a baseball team and a robotics division, they called a team of robots to cheer-leading duty.

Some clips of the cheerleading squad in action have started circulating. A few people may greet the sight with an indifferent shrug, but most tend to fall to an extreme: either finding them hilarious or react with horror. It is only natural to have a strong reaction to such a jarring sight.

Spot was only available for sale recently, and we admit this was not the type of task that came to our minds. Pepper has a longer track record and this is not Pepper’s first baseball game. The humanoid robot has been around long enough to raise questions about a robot’s role in society from unionization to sex work. We haven’t made much progress answering those questions, and now we have even more questions that the lightweight SoftBank Robotics press release (in Japanese) didn’t try to answer.

When people fret about “robots taking our jobs” the conversation doesn’t usually involve sports team cheerleaders, yet here we are. Welcome to the future.

Continue reading “SoftBank Robots Pinch Hit For Baseball Cheerleaders”

Maybe One Of The Most Adorable Obstacle Avoiding Robots You’ve Seen

We’re all pretty well-acquainted with the obstacle avoiding robot. These little inventions use a proximity sensor to detect an object in front of the robot, then circumvent the object accordingly. Brown Dog Gadgets’ little robot really caught our eye, mostly because it’s kind of cute.

This little robot combines a few LEGO pieces, Arduino, and Brown Dog Gadgets’ own in-house invention, Crazy Circuits. The LEGO pieces make up the body of the robot, craftily enclosing a small portable battery pack used to power the bot. Brown Dog Gadgets uses another home-grown design, their robotics controller board, breaking out a few GPIO pins of an Arduino-compatible microcontroller into LEGO-compatible connections. This makes it easy to interface two of our favorite DIY STEM tools using a solderless connection.

Add a few LEGO wheels and a caster for pivoting and you’ve got a pretty simple, little robot. Fortunately, Brown Dog Gadgets was very thorough in their write-up, so head on over to their Instructable for all the details.

In the meantime, we’ve got a rich history of obstacle-avoiding robots here on Hackaday. Take a look around.

Robotic Cornhole Board Does The Electric Slide

There’s a reason why bowling lanes have bumpers and golf games have mulligans. Whether you’re learning a new game or sport, or have known for years how to play but still stink at it, everyone can use some help chasing that win. You’ve heard of the can’t-miss dart board and no-brick basketball goal. Well, here comes the robot-assisted game for the rest of us: cornhole.

The game itself deceptively simple-looking — just underhand throw a square wrist rest into a hole near the top of a slightly angled box. You even get a point for landing anywhere on the box! Three points if you make it in the cornhole. In practice, the game not that easy, though, especially if you’ve been drinking (and drinking is encouraged). But hey, it’s safer than horseshoes or lawn darts.

[Michael Rechtin] loves the game but isn’t all that great at it, so he built a robotic version that tracks the incoming bag and moves the hole to help catch it. A web cam mounted just behind the hole takes a ton of pictures and analyzes the frames for changes.

The web cam sends the bag positions it sees along with its predictions to an Arduino, which decides how it will move a pair of motors in response. Down in the cornhole there’s a pair of drawer sliders that act as the lid’s x/y gantry.

We love how low-tech this is compared to some of the other ways it could be done, even though it occasionally messes up. That’s okay — it makes the game more interesting that way. We think you should get 2 points if it lands halfway in the hole. Aim past the break to check out the build video.

Seems like there’s a robotic-assisted piece of sporting equipment for everything these days. If cornhole ain’t your thing, how’d you like to take a couple strokes off your golf game?

Continue reading “Robotic Cornhole Board Does The Electric Slide”

Animatronic Nikola Tesla Sets The Record Straight

While the Hackaday reader likely knows all about Nikola Tesla and his incredible body of work, the same can’t necessarily be said for the average passerby. Even a child can be counted on to know the names of Thomas Edison and Alexander Graham Bell, but as [Daniel Springwald] laments, the name Tesla is more often associated with the line of sleek electric cars than the brilliant Serbian inventor they were named for.

Hoping to level the playing field a bit, [Daniel] has come up with a way for the great man to plead his case. This custom designed robotic facsimile of the alternating current aficionado is able to speak about Tesla’s life and accomplishments in an interactive, if rather creepy, format.

There isn’t a lot of technical detail on this one yet, but what we can glean from the image gallery and video below is that there are an incredible number of OpenSCAD-designed 3D printed parts knocking around inside Mr. Tesla’s head. Add into the mix a healthy dose of springs, linkages, and servos, and you’re just a mustache short of a museum exhibit.

Most of the animatronic projects we’ve covered in the past have been based on animals, so it’s certainly interesting to see what goes into approximating human mannerisms mechanically. We’re not sure if this talking Tesla head will help educate the masses, but it’s certainly an impressive technical achievement.

Continue reading “Animatronic Nikola Tesla Sets The Record Straight”