We aren’t sure there’s enough information in the [We Make Machines’] video to easily copy their self-balancing bike project, but if you want to do something similar, you can learn a lot from watching the video. Building sufficient gyros to keep the bike stable required quite a bit of trial and error.
There are some tricks to getting a stable heavy weight to rotate without a lot of vibration and problems. The gyros go on the rider’s saddle, so you aren’t going to be able to ride in the normal fashion. However, a substantial motor drives the wheels so there’s no need to pedal.
The first attempt to self-balance stayed stable for about 10 seconds. Some of it was fine-tuning code, but noise from the gyros also threw off the angle sensor. A higher-quality sensor seemed promising, but it didn’t really fix the problem. Instead of using PID, the guys tried an LQR (Linear Quadratic Regulator) algorithm. Once that was sorted and a servo allowed for steering, it was time to let the bike roam free.
The cable car system of San Francisco is the last manually operated cable car system in the world, with three of the original twenty-three lines still operating today. With these systems being installed between 1873 and 1890, they were due major maintenance and upgrades by the time the 1980s and with it their 100th year of operation rolled around. This rebuilding and upgrading process was recorded in a documentary by a local SF television station, which makes for some fascinating viewing.
While the cars themselves were fairly straight-forward to restore, and the original grips that’d latch onto the cable didn’t need any changes. But there were upgrades to the lubrication used (originally pine tar), and the powerhouse (the ‘barn’) was completely gutted and rebuilt.
As opposed to a funicular system where the cars are permanently attached to the cable, a cable car system features a constantly moving cable that the cars can grip onto at will, with most of the wear and tear on the grip dies. Despite researchers at San Francisco State University (SFSU) investigating alternatives, the original metal grip dies were left in place, despite their 4-day replacement schedule.
Ultimately, the rails and related guides were all ripped out and replaced with new ones, with the rails thermite-welded in place, and the cars largely rebuilt from scratch. Although new technologies were used where available, the goal was to keep the look as close as possible to what it looked at the dawn of the 20th century. While more expensive than demolishing and scrapping the original buildings and rolling stock, this helped to keep the look that has made it a historical symbol when the upgraded system rolled back into action on June 21, 1984.
Decades later, this rebuilt cable car system is still running as smoothly as ever, thanks to these efforts. Although SF’s cable car system is reportedly mostly used by tourists, the technology has seen somewhat of a resurgence. Amidst a number of funicular systems, a true new cable car system can be found in the form of e.g. the MiniMetro system which fills the automated people mover niche.
In the world of transportation, some technologies may seem to make everything else appear obsolete, whether it concerns airplanes, magnetic levitation or propelling vehicles and craft over a cushion of air. This too seemed to be the case with hovercraft when they exploded onto the scene in the 1950s and 1960s, seemingly providing the ideal solution for both commercial and military applications. Freed from the hindrances of needing a solid surface to travel upon, or a deep enough body of water to rest in, hovercraft gave all the impressions of combining the advantages of aircraft, ships and wheeled vehicles.
Yet even though for decades massive passenger and car-carrying hovercraft roared across busy waterways like the Channel between England & mainland Europe, they would quietly vanish again, along with their main competition in the form of super fast passenger catamarans. Along the English Channel the construction of the Channel Tunnel was a major factor here, along with economical considerations that meant a return to conventional ferries. Yet even though one might think that the age of hovercraft has ended before it ever truly began, the truth may be that hovercraft merely had to find its right niches after a boisterous youth.
An example of this can be found in a recent BBC article, which covers the British Griffon Hoverwork company, which notes more interest in new hovercraft than ever, as well as the continued military interest, and from rescue workers.
E-bikes combine a bicycle with a big lithium battery, a speed controller, and a motor. What you get from that combination is simple, efficient transportation. [Tom Stanton] wanted to build an e-bike himself, but he did it without any of the fancy electronic components. But the real gem? The weird janky motor he built to run it.
The concept is simple. An e-bike is electric, in that it has an electric motor and a source of electric power. However, [Tom] intended to eliminate the electronic parts—the speed controller, any battery balancing hardware, and the like. Just think no transistors and microchips and you’ve got the right idea. Basically, [Tom] just built an e-bike with motor weak enough that it doesn’t need any fancy throttle control. He can just turn the motor hard on or off with a switch.
The bike is built around a reed switch motor. This uses magnets on a rotor, which interact with a reed switch to time pulses of electricity to coils which drive the motor. [Tom] wound the coils and built the motor from scratch using 3D printed components. The project quickly ran into problems as the reed switch began to suffer degradation from arcing, which [Tom] solved with some innovative tungsten contacts.
Controlling the bike is pretty simple—there’s just a switch connecting a capacitor bank to the motor to provide power on command. No electronics! However, [Tom] has also neatly set up the motor to charge a bank of supercapacitors when coasting downhill. In this regard, the bike can store power on a descent and then use it for a boost when required later on. Between the weird motor and the weedy capacitor bank, it doesn’t do much, but it does work.
We tinkerers often have ideas we know are crazy, and we make them up in the most bizarre places, too. For example, just imagine hosting a website while pedaling across the world—who would (not) want that? Meet [Jelle Reith], a tinkerer on an epic cycling adventure, whose bicycle doubles as a mobile web server. [Jelle]’s project, jelle.bike, will from the 6th of December on showcase what he’s seeing in real time, powered by ingenuity and his hub dynamo. If you read this far, you’ll probably guess: this hack is done by a Dutchman. You couldn’t be more right.
At the heart of [Jelle]’s setup is a Raspberry Pi 4 in a watertight enclosure. The tiny powerhouse runs off energy generated by a Forumslader V3, a clever AC-to-DC converter optimized for bike dynamos. The Pi gets internet access via [Jelle]’s phone hotspot, but hosting a site over cellular networks isn’t as simple as it sounds. With no static IP available, [Jelle] routes web traffic through a VPS using an SSH tunnel. This crafty solution—expanded upon by Jeff Geerling—ensures seamless access to the site, even overcoming IPv6 quirks.
The system’s efficiency and modularity exemplify maker spirit: harnessing everyday tools to achieve the extraordinary. For more details, including a parts list and schematics, check out [Jelle]’s Hackaday.io project page.
Getting every detail perfectly right is often the goal in automotive restorations, and some people will go to amazing lengths to make sure the car looks and acts just like it did when it rolled off the dealer’s lot all those decades ago. That ethos can be pushed a little too far, though, especially with practical matters like knowing how much gas is left in the tank. Get that wrong and you’ll be walking.
Unwilling to risk that cruel fate with his restoration of 1978 Volkswagen Bus, [Pegork] came up with a replacement fuel gauge that looks identical to the original meter, but actually works. The gas gauges on ’60s and ’70s VWs were notoriously finicky, and when they bothered to work at all they were often wildly inaccurate. The problem was usually not with the sender unit in the tank, but the gauge in the dash, which used a bimetallic strip heated by a small coil of wire to deflect a needle. [Pegor]’s “SmoothBus” modification replaces the mechanical movement with a micro servo to move the needle. The variable voltage coming back from the fuel sender is scaled through a voltage divider and read by an analog input on an ATtiny85, which does a little algorithmic smoothing to make sure the needle doesn’t jump around too much. A really nice addition is an LED low fuel indicator, a feature that would have saved us many walks to the gas station back in our VW days. Except for the extra light, the restored gauge looks completely stock, and it works far better than the original.
Hats off to [Pregor] for this fantastic restomod. As we’ve noted before, classic VWs are perhaps the most hackable of cars, and we applaud any effort to keep these quirky cars going.
Taildraggers remain a popular configuration for small aircraft, but they come with a significant risk during ground handling: ground loops. If the tail gets too far off course, it can swing around completely, often damaging or destroying aircraft if a wing hits the ground. Avoiding ground loops requires good rudder and brake control, and there currently isn’t a good way to learn it without getting into an actual aircraft. [Trent Palmer] is a pilot and who has been thinking about this problem for a few years, so he built a 3-wheeled electric go-cart to help pilots train their ground handling.
The cart is controlled exactly like a taildragger, with a pair of rudder pedals connected to the single steerable via cables, and springs to add some response delay. Independent hydraulic brakes on each main wheel, operated by toe pedals, further simulate the control on many aircraft. The main wheel are controlled with a throttle lever, with a differential to allow them to rotate at different speeds. The cart is unforgiving, and requires constant corrections with the pedals to keep it going straight.[Trent] had few pilot and non-pilot friends try out the cart, and even the experienced tailwheel pilots got into ground loop. It might be bit too sensitive, but everyone agreed that mastering this cart would significantly improve ground handling skills in actual aircraft.
Repairing a damaged aircraft can cost several thousand dollar, so a cheap training tool like this could prove invaluable flight schools and even individual pilots. [Trent] doesn’t have big plans for commercialization, but we wouldn’t be surprised if it goes that way.