China’s New 100 MPH Train Runs On Hydrogen And Supercaps

Electric cars are very much en vogue right now, as the world tries to clean up on emissions and transition to a more sustainable future. However, these vehicles require huge batteries as it is. For heavier-duty applications like trucks and trains, batteries simply won’t cut the mustard.

Normally, the solution for electrifying railways is to simply string up some wires and call it a day. China is trying an alternative solution, though, in the form of a hydrogen-powered train full of supercapacitors.

Continue reading “China’s New 100 MPH Train Runs On Hydrogen And Supercaps”

Driverless Buses Take To The Road In Scotland

Scotland! It’s the land of tartans, haggis, and surprisingly-warm kilts. It’s also ground zero for the first trial of full-sized driverless buses in the United Kingdom.

It’s not just automakers developing driverless technologies. Transit companies are desperate to get in on the action because it would completely upend their entire existing business structure. Now that self-driving buses are finally approaching a basic level of competence, they’re starting to head out to haul passengers from A to B. Let’s look at how the UK’s first driverless bus project is getting on out in the real world. 

Continue reading “Driverless Buses Take To The Road In Scotland”

A black quadcopter sits on a grey surface. In place of traditional propellers are four figure eight propellers with sharp tips where the top and bottom of the eight would be.

Toroidal Propellers Make Drones Less Annoying

Despite being integral to aviation for more than a century, propellers have changed remarkably little since the Wright Brothers. A team at MIT’s Lincoln Lab has developed a new propeller shape that significantly reduces the noise associated with drones. [PDF via NewAtlas]

Inspired by some of the experiments with “ring wings” in the early 20th Century, researchers iterated on various toroidal propeller geometries until arriving at one that significantly reduces the sound produced by the rotors, particularly in the range of human hearing. The team suspects the reduction in noise is due to vortices being distributed over the whole propeller instead of just the tips.

Experiments show the drones can get twice as close before becoming a nuisance for human ears which should be great news for anyone hoping to launch Skynet commercial drone deliveries. Since the rotors are easily fabricated via 3D printing they should be easy to adapt to a number of different drones.

If you want to explore some more interesting drones, checkout this one that can fly and swim or this one that only uses a single propeller.

ADS-B Exchange Sells Up, Contributors Unhappy

In the news among aviation enthusiasts, the ADS-B data aggregation and aircraft tracking site ADSB-Exchange has been sold by its founder to JETNET for a reported $20,000,000. This type of routine financial news is more at home in the business media than on Hackaday, but in this case there’s something a little different at play. ADS-B Exchange is a community driven site whose data comes from thousands of enthusiasts worldwide connecting their ADS-B receivers to its feed API. The sale to a commercial flight data company has not gone down well with this community who are unsurprisingly unimpressed that their free contributions to the website have been sold.

This certainly isn’t the first time a site built on community data has flipped into big business, and while it’s unclear whether JETNET will do a full CDDB and boot out anyone not paying to play, we can understand the users feeling that their work has been sold from under them. On the other hand, how many of us can truly claim their open source beliefs wouldn’t start to buckle once somebody slides a $20m check across the table?

It’s evidently too late for anyone aggrieved by their ADS-B data being sold, but perhaps there’s something else to think about here. We have an established way to recognize open source software in the many well-known software libre licences, but we don’t for crowd-sourced data. Perhaps it’s time for the open-source community to consider this problem and come up with something for future sites like ADS-B Exchange whatever field they may be in, a licence which clearly defines the open terms under which contributors provide the data and those under which site owners can use it. Otherwise we’ll be here again in a few years writing about another aggrieved community, and we think that doesn’t have to happen.

Adding Electronic Shifter Functionality To Bicycle Derailleur

For the overwhelming majority of bicycles out there that feature multiple gears, switching between these is done purely mechanically, with a cable. Generally this uses a derailleur, which forms part of the gear switching and chain tensioning mechanism. As a mechanical system, it’s reliable when well maintained, but tuning it can be a real hassle. This is where an electronic shifter should be able to provide faster, more reliable and quieter shifting, and is also where [Jesse DeWald]’s electronic shifting project begins.

As [Jesse] points out in the introductory article on electronic shifting, it’s not a new concept, with everyone from Shimano (Di2) to Archer and others coming up with their own version. Some of these require replacing the existing derailleur, while others should allow for non-destructive modification. What [Jesse] did not find among this constellation of options was a version that’d work with existing derailleurs, did not require destructive modifications and have a long battery life.

[Jesse]’s design omits the servo present in Archer’s design, and uses the existing derailleur spring, with the reasoning explained in a nice spring physics refresher. Instead a stepper is used along with a matched balancer spring that in testing managed over 3 months of standby time with a 3,700 mAh Li-ion battery and thousands of shifts. At the core of the system is an Arduino Pro Mini board, the code for which is available along with the design plans.

The project is not done at this point, of course, with a whole range of improvements still to be added, including a case, so that the shifter can be used outside in the rain.

Smart Bike Suspension Tunes Your Ride On The Fly

Riding a bike is a pretty simple affair, but like with many things, technology marches on and adds complications. Where once all you had to worry about was pumping the cranks and shifting the gears, now a lot of bikes have front suspensions that need to be adjusted for different riding conditions. Great for efficiency and ride comfort, but a little tough to accomplish while you’re underway.

Luckily, there’s a solution to that, in the form of this active suspension system by [Jallson S]. The active bit is a servo, which is attached to the adjustment valve on the top of the front fork of the bike. The servo moves the valve between fully locked, for smooth surfaces, and wide open, for rough terrain. There’s also a stop in between, which partially softens the suspension for moderate terrain. The 9-gram hobby servo rotates the valve with the help of a 3D printed gear train.

But that’s not all. Rather than just letting the rider control the ride stiffness from a handlebar-mounted switch, [Jallson S] added a little intelligence into the mix. Ride data from the accelerometer on an Arduino Nano 33 BLE Sense was captured on a smartphone via Arduino Science Journal. The data was processed through Edge Impulse Studio to create models for five different ride surfaces and rider styles. This allows the stiffness to be optimized for current ride conditions — check it out in action in the video below.

[Jallson S] is quick to point out that this is a prototype, and that niceties like weatherproofing still have to be addressed. But it seems like a solid start — now let’s see it teamed up with an Arduino shifter.

Continue reading “Smart Bike Suspension Tunes Your Ride On The Fly”

Off-Grid Van Build Uses 3D Scanning For Smarter Planning

Folks who refurbish and rebuild vans into off-grid campers (especially with the ability to work in them remotely) put a fantastic amount of planning and work into their projects. [Rob] meticulously documented his finished van conversion and while he does a ton of clever work, we especially liked how he shows modern tools like photogrammetry can improve the process.

Photogrammetry helped turn a bunch of photos from different angles into a textured 3D model with accurate dimensions.

[Rob] used a camera and photogrammetry software to 3D scan the van inside and out. The resulting model means that CAD tools can better assist with the layout and design phase. This is an immense help, because as [Rob] points out, an empty van is anything but a hollow box on wheels. Every surface is curved, none of the sides are identical, and there frankly isn’t a right angle to be found anywhere. When every little scrap of space counts, it’s important to have an accurate reference.

Of course, mapping the work are was just the beginning. It took six months, but he turned a Volkswagen Crafter cargo van into a slick off-grid camper capable of remote work. The full series of videos is on his site, but you can also watch the video highlights, embedded below.

The photogrammetry was done with Meshroom, and if you’d like to know more, we’ve previously explained different 3D scanning methods and how they can help with design work like this.

Continue reading “Off-Grid Van Build Uses 3D Scanning For Smarter Planning”