3D Printer Warning: Heating Plastic To High Temps Is Not Healthy

If you’ve ever tried to cut a piece of acrylic with a tool designed to cut wood or metal, you know that the plastic doesn’t cut in the same way that either of the other materials would. It melts at the cutting location, often gumming up the tool but always releasing a terrible smell that will encourage anyone who has tried this to get the proper plastic cutting tools instead of taking shortcuts. Other tools that heat up plastic also have this problem, as Gizmodo reported recently, and it turns out that the plastic particles aren’t just smelly, they’re toxic.

The report released recently in Aerosol Science and Technology (first part and second part) focuses on 3D printers which heat plastic of some form or other in order to make it malleable and form to the specifications of the print. Similar to cutting plastic with the wrong tool, this releases vaporized plastic particles into the air which are incredibly small and can cause health issues when inhaled. They are too small to be seen, and can enter the bloodstream through the lungs. The study found 200 different compounds that were emitted by the printers, some of which are known to be harmful, including several carcinogens. The worst of the emissions seem to be released when the prints are first initiated, but they are continuously released throuhgout the print session as well.

Perhaps it’s not surprising that aerosolized plastic is harmful to breathe, but the sheer magnitude of particles detected in this study is worth taking note of. If you don’t already, it might be good to run your 3D printer in the garage or at least in a room that isn’t used as living space. If that’s not possible, you might want to look at other options to keep your work area safe.

Thanks to [Michael] for the tip!

Expanding 3D Printer Bed Stays True Under Fire

It’s hard to pass up another lesson in good machine design brought to us by [Mark Rehorst]. This time, [Mark] combats the relentless forces of bed deformation due to thermal expansion.

Did you think your printer stayed the same size when it heated up? Well, think again! According to [Mark’s] calculations, when heated, the bed can expand by as much as half a millimeter in the x/y direction. While x/y deformation seems like something we can ignore, that’s not always true. If our bed is rigidly fixed in place, then that change in dimension will only result in a warped bed as it tries to make space for itself.

Don’t give up yet though. As sinister as this problem may seem, [Mark] introduces a classic-but-well-implemented solution: and adjustable kinematic coupling. The kinematic coupling holds the bed at the minimum number of points to keep it rigid while exposing thumbscrews to dial in a level bed. What’s special about this technique is that the coupling holds the bed perfectly rigid whilst allowing it to thermally expand!

This is the beauty of “exact constraint” design. Parts are held together only by the minimum number of points needed to guarantee a specific relationship. Here that relationship is coplanarity between the the nozzle’s x/y plane and the bed. Even when the bed expands this relationship holds. Now that is magic.

With such a flood of 3D printed parts on the market, building a printer has never been easier! Nevertheless, it’s easy to pin ourselves into a corner re-tuning a poor design that skips a foundation on the base principles. If you’re curious about more of these principles behind 3D printer design, check out [Mark’s] thorough walkthrough on the CoreXY design.

The Bolt-On Peristaltic Pump

With the proliferation of 3D printing in the new millennium, stepper motors are no longer those idle junkbox inhabitants you pulled out of a dot matrix in 1994 and forgot about ever since. NEMA standard parts are readily available and knocking about just about everywhere. Now, you can readily turn a stepper motor into a peristaltic pump with just a few simple 3D printed parts.

The pump consists of a bracket that fits on to a standard NEMA-14 stepper motor frame. A rotor is then fitted to the motor shaft, constructed out of a 3D printed piece fitted with a series of standard roller bearings. These bearings roll against the tubing, pumping the working fluid.

The design uses the bearings to squeeze outwards against the tube’s own elastic resistance. Frictional wear is minimised by ensuring the tube is only pressed on by the bearings themselves, avoiding any contact between the tubing and hard plastic surfaces.

While the design is in its early stages of development, we’d be interested to see a pump performance comparison against other 3D printed peristaltic designs – we’ve seen a few before!

[Thanks to Baldpower for the tip!]

 

Ghost Rider Costume Is Smoking Hot

It’s that spooky time of year once again, with pumpkins and cobwebs as far as the eye can see. This year, [Mikeasaurus] has put together something really special – a Ghost Rider costume with some amazing effects.

The costume starts with the skull mask, which started with a model from Thingiverse. Conveniently, the model was already set up to be 3D printed in separate pieces. [Mike] further modified the design by cutting out the middle to make it wearable. The mask was printed in low resolution and then assembled. [Mike] didn’t worry too much about making things perfect early on, as the final finish involved plenty of sanding and putty to get the surface just right. To complete the spooky look, the skull got a lick of ivory paint and a distressed finish with some diluted black acrylic.

With the visual components complete, [Mike] turned his attention to the effects. Light is courtesy of a series of self-blinking LEDs, fitted inside the mask to give the eye sockets a menacing orange glow. However, the pièce de résistance is the smoke effect, courtesy of a powerful e-cigarette device and an aquarium pump. At 225W, and filled with vegetable glycerine, this combination produces thick clouds of smoke which emanate from the back of the wearer’s jacket and within the skull itself. Truly stunning.

[Mike] reports that the costume is scary enough that he has been banned from answering the door as Ghost Rider. We think it’s bound to be a hit, regardless. For another epic mask build, check out the Borderlands Psycho. Video after the break. Continue reading “Ghost Rider Costume Is Smoking Hot”

10,000-Year-Old Camera Lens Takes Striking Pictures

The first photograph was taken sometime in the early 1800s, and through almost two centuries of development we’ve advanced through black-and-white, the video camera, and even high-speed cameras that can take thousands of frames per second. [Mathieu Stern] took a step back from all of the technological progress of the past two hundred years, though, and found a lens for his camera hidden in the glacial ice of Iceland.

Ice in this part of the world has been purified over the course of 10,000 years, and [Mathieu] realized that with this purity the ice could be formed into a workable camera lens. The first step was to get something that could actually form the ice into the proper shape, and for that he used a modified ice ball maker that was shaped to make a lens rather than a sphere. Next, he needed an enclosure to hold the lens and attach it to his camera, which he made using a 3D printer.

For this build, the hardest part probably wasn’t making the actual equipment, but rather getting to the right place in Iceland and actually making the lenses. At room temperature the lenses could be made in around five minutes, but in Iceland it took almost 45 minutes and the first four attempts broke. The fifth one was a charm though, so after over five hours on the beach he was finally able to make some striking images with the 10,000-year-old ice lens which melted after only a minute of use. If that seems like too much work, though, you can always outfit your camera with no lens at all.

Thanks to [baldpower] for the tip!

Continue reading “10,000-Year-Old Camera Lens Takes Striking Pictures”

3D Printing, Halloween Style

The wonders of 3D printing don’t stop coming. Whether it’s printing tools on the International Space Station, printing houses out of concrete, or just making spare parts for a child’s toy, there’s virtually nothing you can’t get done with the right 3D printer, including spicing up your Halloween decorations.

Not only is this pumpkin a great-looking decoration for the season on its own, but it can also transform into a rather unsettling spider as well for a little bit of traditional Halloween surprise. The print is seven parts, which all snap into place and fold together with a set of ball-and-socket joints. While it doesn’t have any automatic opening and closing from a set of servos, perhaps we will see someone come up with a motion-activated pumpkin spider transformer that will shock all the trick-or-treaters at the end of this month.

It’s not too late to get one for yourself, either. The files are available on Thingiverse or through the project site. And we’ve seen plenty of other Halloween hacks and projects throughout the years too if you’re looking for other ideas, like the recent candy machine game, a rather surprising flying human head, or this terrifying robot.

Modular Violin Takes A Bow

They say the only difference between a violin and a fiddle is the way you play it. If that’s so, this modular violin will need a new name, since it can be broken apart and changed in ways that make it sound completely different, all within a few minutes.

The fiddle is the work of [David Perry] and has 3D printed body, neck, pegbox, and bridge. While it might seem useful on the surface as a way to get less expensive instruments out in the world where virtually anyone has access to them, the real interesting qualities are shown when [David] starts playing all of the different versions he’s created. The sound changes in noticeable ways depending on the style of print, type of plastic used, and many other qualities.

Of course you will need a bow, strings, pegs, and a fingerboard, but the rest is all available if you have a 3D printer around. If you’re already a skilled violinist this could be a very affordable way to experiment with new sounds. It’s not the first time we’ve seen 3D printed violins, but it is the first time we’ve seen them designed specifically to alter the way they sound rather than their physical characteristics. If you want to make your own, all of the .stl files are available on the project’s site.

Continue reading “Modular Violin Takes A Bow”