A Compass That Looks To The Stars

Although a lot of tools have been digitized and consolidated into our smartphones, from cameras, music players, calendars, alarm clocks, flashlights, and of course phones, perhaps none are as useful as the GPS and navigational capabilities. The major weakness here, though, is that this is a single point of failure. If there’s no cell service, if the battery dies, or you find yourself flying a bomber during World War II then you’re going to need another way to navigate, possibly using something like this Astro Compass.

The compass, as its name implies, also doesn’t rely on using the Earth’s magnetic field since that would have been difficult or impossible inside of an airplane. Instead, it can use various celestial bodies to get a heading. But it’s not quite as simple as pointing it at a star and heading off into the wild blue yonder. First you’ll need to know the current time and date and look those up in a companion chart. The chart lists the global hour angle and the declination for a number of celestial bodies which can be put into the compass. From there the latitude is set and the local hour angle is calculated and set, and then the compass is rotated until the object is sighted. After all of that effort, a compass heading will be shown.

For all its complexity, a tool like this can be indispensable in situations where modern technology fails. While it does rely on precise tabulated astrometric data to be on hand, as long as that’s available it’s almost failsafe, especially compared to a modern smartphone. Of course, you’ll also need a fairly accurate way of timekeeping which can be difficult in some situations.

Continue reading “A Compass That Looks To The Stars”

Fairey Rotodyne in flight

Versatile, Yet Grounded: The Rotodyne Revisited

When it comes to aviation curiosities, few machines captivate the imagination like the Fairey Rotodyne. This British hybrid aircraft was a daring attempt to combine helicopter and fixed-wing efficiency into a single vehicle. A bold experiment in aeronautical design, the Rotodyne promised vertical takeoffs and landings in cramped urban spaces while offering the speed and range of a regional airliner. First flown in 1957, it captured the world’s attention but ultimately failed to realize its potential. Despite featured before, new footage keeps fascinating us. If you have never heard about this jet, keep reading.

The Rotodyne’s innovative design centered around a massive, powered rotor that utilized a unique tip-jet system. Compressed air, mixed with fuel and ignited at the rotor tips, created lift without the need for a tail rotor. The result: a smoother transition between vertical and forward flight modes. Inside, it offered spacious seating for 50 passengers and even had clamshell doors for cargo. Yet its futuristic approach wasn’t without drawbacks—most notably, the thunderous noise produced by its rotor jets, earning complaints from both city planners and residents.

Despite these hurdles, the helicopter-plane crossover demonstrated its versatility, setting a world speed record and performing groundbreaking intercity flights. Airlines and militaries expressed interest, but escalating development costs and noise concerns grounded this ambitious project.

To this day, the Rotodyne remains a symbol of what could have been—a marvel of engineering ahead of its time. Interested in more retro-futuristic aircraft tales? Read our previous story on it, or watch the original footage below and share your thoughts.

Continue reading “Versatile, Yet Grounded: The Rotodyne Revisited”

Small Feathers, Big Effects: Reducing Stall Speeds With Strips Of Plastic

Birds have long been our inspiration for flight, and researchers at Princeton University have found a new trick in their arsenal: covert feathers. These small feathers on top of birds’ wings lay flat during normal flight but flare up in turbulence during landing. By attaching flexible plastic strips – “covert flaps” – to the top of a wing, the team has demonstrated impressive gains in aircraft performance at low speeds.

Wind tunnel tests and RC aircraft trials revealed a fascinating two-part mechanism. The front flaps interact with the turbulent shear layer, keeping it close to the wing surface, while the rear flap create a “pressure dam” that prevents high-pressure air from moving forward. The result? Up to 15% increase in lift and 13% reduction in drag at low speeds. Unfortunately the main body of the paper is behind a paywall, but video and abstract is still fascinating.

This innovation could be particularly valuable during takeoff and landing – phases where even a brief stall could spell disaster. The concept shares similarities with leading-edge slats found on STOL aircraft and fighter jets, which help maintain control at high angles of attack. Imitating feathers on aircraft wings can have some interesting applications, like improving control redundancy and efficiency.

Continue reading “Small Feathers, Big Effects: Reducing Stall Speeds With Strips Of Plastic”

Soaring At Scale: Modular Airship Design

If you’re looking for an intriguing aerial project, [DilshoD] has you covered with his unique twist on modular airships. The project, which you can explore in detail here, revolves around a modular airship composed of individual spherical bodies filled with helium or hydrogen—or even a vacuum—arranged in a 3x3x6 grid. The result? A potentially more efficient airship design that could pave the way for lighter-than-air exploration and transport.

The innovative setup features flexible connecting tubes linking each sphere to a central gondola, ensuring stable expansion without compromising the airship’s integrity. What’s particularly interesting is [DilshoD]’s use of hybrid spheres: a vacuum shell surrounded by a gas-filled shell. This dual-shell approach adds buoyancy while reducing overall weight, possibly making the craft more maneuverable than traditional airships. By leveraging materials like latex used in radiosonde balloons, this design also promises accessibility for makers, hackers, and tinkerers.

Though this concept was originally submitted as a patent in Uzbekistan, it was unfortunately rejected. Nevertheless, [DilshoD] is keen to see the design find new life in the hands of Hackaday readers. Imagine the possibilities with a modular airship that can be tailored for specific applications. Interested in airships or modular designs? Check out some past Hackaday articles on DIY airships like this one, and dive into [DilshoD]’s full project here to see how you might bring this concept to the skies.

Hackaday Links Column Banner

Hackaday Links: September 29, 2024

There was movement in the “AM Radio in Every Vehicle Act” last week, with the bill advancing out of the US House of Representatives Energy and Commerce Committee and heading to a full floor vote. For those not playing along at home, auto manufacturers have been making moves toward deleting AM radios from cars because they’re too sensitive to all the RF interference generated by modern vehicles. The trouble with that is that the government has spent a lot of effort on making AM broadcasters the centerpiece of a robust and survivable emergency communications system that reaches 90% of the US population.

The bill would require cars and trucks manufactured or sold in the US to be equipped to receive AM broadcasts without further fees or subscriptions, and seems to enjoy bipartisan support in both the House and the Senate. Critics of the bill will likely point out that while the AM broadcast system is a fantastic resource for emergency communications, if nobody is listening to it when an event happens, what’s the point? That’s fair, but short-sighted; emergency communications isn’t just about warning people that something is going to happen, but coordinating the response after the fact. We imagine Hurricane Helene’s path of devastation from Florida to Pennsylvania this week and the subsequent emergency response might bring that fact into focus a bit.

Continue reading “Hackaday Links: September 29, 2024”

Supercon 2023: Why More Hackers Should Earn Their Wings

Hacking has taken on many different meanings over the years, but if you’re here reading these words, we’ll assume your definition is pretty close to ours. To hack is to explore and learn, to find new and (hopefully) better ways of doing things. Or at least, that’s part of it. The other part is to then take what you learned and share it with others. Do that enough, and soon you’ll find yourself part of a community of like-minded individuals — which is where things really start getting interesting.

Here at Hackaday the objects of our attention are, with the occasional exception, electronic devices of some sort or another. Perhaps an old piece of gear that needs a modern brain transplant, or a misbehaving consumer gadget that could benefit from the addition of an open source firmware. But just as there are different ways to interpret the act of hacking, there’s plenty of wiggle room when it comes to what you can hack on.

In his talk during the 2023 Hackaday Supercon, Tom Mloduchowski makes the case that more hackers should be getting involved with aviation. No, we’re not talking about flying drones, though he does cover that during the presentation. This is the real deal. Whether you want to take a quick joyride in a small plane, become a professional pilot, or even build and operate your own experimental aircraft, this talk covers it all.

Continue reading “Supercon 2023: Why More Hackers Should Earn Their Wings”

DIY Passive Radar System Verifies ADS-B Transmissions

Like most waves in the electromagnetic spectrum, radio waves tend to bounce off of various objects. This can be frustrating to anyone trying to use something like a GMRS or LoRa radio in a dense city, for example, but these reflections can also be exploited for productive use as well, most famously by radar. Radar has plenty of applications such as weather forecasting and various military uses. With some software-defined radio tools, it’s also possible to use radar for tracking aircraft in real-time at home like this DIY radar system.

Unlike active radar systems which use a specific radio source to look for reflections, this system is a passive radar system that uses radio waves already present in the environment to track objects. A reference antenna is used to listen to the target frequency, and in this installation, a nine-element Yagi antenna is configured to listen for reflections. The radio waves that each antenna hears are sent through a computer program that compares the two to identify the reflections of the reference radio signal heard by the Yagi.

Even though a system like this doesn’t include any high-powered active elements, it still takes a considerable chunk of computing resources and some skill to identify the data presented by the software. [Nathan] aka [30hours] gives a fairly thorough overview of the system which can even recognize helicopters from other types of aircraft, and also uses the ADS-B monitoring system as a sanity check. Radar can be used to monitor other vehicles as well, like this 24 GHz radar module found in some modern passenger vehicles.

Continue reading “DIY Passive Radar System Verifies ADS-B Transmissions”