Hackaday Links: Sept 15, 2012

Very tiny keyboard

The idea behind the iControlPad2 is pretty simple – just take the slide-out keyboard from a phone, discard the phone part, add two analog sticks and a D-pad, and put Bluetooth in it. It makes for a very small keyboard perfect for controlling a Raspi, a home media server, or even a phone or tablet. I think it’s cool, anyway.

I mustache you a question. Where’s the Hawaiian Shirt?

At her local hackerspace, [Akki] heard someone pronouncing Raspberry Pi as, “Raspberry pee eye.” Of course this joke needed to be taken to its fullest absurdity, so [Akki] gave her Raspi a [Tom Selleck] mustache. Slightly better than the Googly Eyes Arduino shield.

Not giving a Flip about proprietary batteries

When powering a Flip video camera, [Dan] had two choices: regular AA batteries, or a proprietary battery rechargeable through the USB port. When the rechargeable battery is inserted, it closes a small switch telling the Flip it can recharge these batteries. Wanting to put his own rechargeable batteries in his camera, [Dan] closed the switch with a little bit of cardboard, thus allowing him to use his own NiMH rechargeable batteries.

Building operating systems from scratch

A while ago we posting something about a Cambridge professor putting up a tutorial for developing an operating system from scratch on the Raspberry Pi. [Joey] decided to follow these tutorials and has a blog dedicated to his adventures in OS development. It’s not a custom UNIX-inspired OS yet….

Put a quarter in, get a goldfish

[Yooder] over on Reddit spent a week turning a gumball machine into a fish tank. A very nice build that is now home to a few neon tetras. Check out the imgur album for a full build walkthrough.

Aquarium Automation Keeps The Fish Fed And The Lights On

fish-tank-automator

Anyone who owns a fish tank knows that a good amount of care is required to keep fish happy, healthy, and most of all – alive. [Vicente Jiménez] usually has no problem keeping up on the day to day maintenance such as feeding and switching the tank light, but he wanted to automate these processes for times when he can’t be home to take care of the fish (Translation).

His aquarium automation project is meant to cover three separate parts of the operation: light control, feeding, and pump regulation during feeding times. [Vincente] picked up an STM8L Discovery board to control his system, which enabled him to easily control the automation of all three.

He constructed the feeding mechanism using an old cassette player motor, which turns his food drum (an old film canister), twice a day at specified feeding times. Before the drum is turned to dispense food, the STM8L turns off the aquarium’s pump via a relay to ensure it doesn’t get clogged in the process. During the day he keeps the tank illuminated, but once night falls, the microcontroller shuts the lights off so the fish can get their rest.

There’s no video of the system in action, but [Vincente] has detailed its construction pretty thoroughly in his blog, so be sure to check it out if you are in need of something similar.

Arduino Aquarium Lights

[Kalle Hyvönen] just finished building his own aquarium lights. He used four powerful soft-white LEDs, mounting them on a pair of heat sinks to keep things cool. Now he could have just connected them to the power supply and plugged it into the wall, but instead he included is own controller. An Arduino drives the switch-mode power supply, offering dimming thanks to PWM, and the ability to automatically switch the light on and off using an RTC chip with a battery backup. The sketch includes the ability to alter the lighting schedule and other variables by sending serial commands through a USB connection. This protocol is detailed with comments in his sketch.

We’ve seen a lot of interesting aquarium light projects. This one that uses heat from the LEDs to warm the water is one of our favorites. Others are full of features like this version that includes a moonlight mode. But Arduino enthusiasts don’t have to look far to find offerings like this PAR meter build, or this aquarium light controller library which can be recreated using the ubiquitous controller board.

Aquarium Water Exchanger Built From Keurig Parts

We keep seeing commercials for those Keurig coffee makers that use a plastic pod of grounds to brew just one cup of coffee. We’re pretty sure this is a fad, and absolutely sure that the extra packaging created by brewing with this method is a waste. But to each his own. [Danman1453] has two of the devices. One he bought, the other is a warranty replacement. He decided to scrap the malfunctioning unit and see if he could put it to good use. What he ended up with is the aquarium pumping system you see above.

It is conceived as tidier way to swap out the water in the fish tank. He had been using tubing to siphon the water, but found he almost always made a mess. This system uses an air pump to prime the water pump by pressurizing the tank which forces water into the lines. Once the water pump is primed he switches over to that for the rest of the work. He used an old metal tool box as an enclosure, using the cover to mount the push-buttons which route power to various components when pressed. Many of the parts were transplants from the coffee maker, but even if you sourced all of the components new this wouldn’t cost too much to put together.

Hacking Together A Color Changing Water Wall

[BadWolf’s] girlfriend wanted him to build her a lamp for Christmas and he didn’t disappoint. What he came up with is a water-filled color changing lamp with bubbles for added interest. See for yourself in the clip after the jump.

The color changing properties are easily taken care of by some waterproof RGB LED strips. [BadWolf] went the Arduino route for this project but any microcontroller will be able to fill the role of color cycling. The enclosure is all hand-made from acrylic sheets. He grabbed some chemical welding liquid from the hardware store and applied it to the acrylic with a syringe. That’s easy enough when attaching the edges to one side of the enclosure. But it gets much tougher when it’s time to seal up the other side. He recorded a video of this which shows the syringe taped to a rod so he can get it down in there, pushing the plunger with a second extension device.

Bubbles are supplied by a small aquarium pump. We’re wondering if this will need frequent cleaning or if you can get some pool chemicals to keeps it nice and clear (or just a teaspoon of bleach)? Continue reading “Hacking Together A Color Changing Water Wall”

Keeping Axolotl Healthy And Cool

The real life Mudkip Wooper Pokemon seen above is an axolotl, a salamander-like animal that lives in only one lake near Mexico City. These adorable animals can be bred in captivity, but keeping them is a challenge. [LRVICK] decided he didn’t want to throw down hundreds of dollars for an aquarium cooler so he built his own out of parts usually used for keeping computers nice and cold.

Commercial aquarium coolers that would meet the requirements start around $300 and go up from there. Not wanting to spend that much, [LRVICK] found a 77 Watt Peltier cooler for $5 and figured he could make it work. Off-the-shelf parts for water cooling CPUs were used to construct the aquarium cooler – a water block on the cold side, a huge heat sink and fan for the hot side, and a bunch of tubing goes up to the tank.

Now [LRVICK] has an axolotl housed in a very professional-looking aquarium that is a steady 65 degrees. He’s got a very nice build, and the axolotl looks very happy.

Automated Aquarium Chemical Dispenser Is Extremely Precise

precision_doser_nano_doser_espresso_pump

[Robovergne] prides himself on the beautiful reef aquarium that he has set up in his home. These sorts of water displays require constant maintenance due to the mineral requirements of living coral. Rather than add mineral solutions manually, he decided to build a nano-doser using espresso machine pumps (Google Translation).

These vibration pumps run on mains voltage, so he had several options as far as how to control them. Using relays would likely make things pretty noisy, so he chose to use a zero crossing detection circuit to precisely control the pumps’ duty cycles and output.

His setup uses a PIC to control everything from the zero crossing circuit to the display LCD. An amount of product and the distribution time frame are entered using a handful of buttons mounted on the front of his control box, leaving the PIC to do the heavy lifting. It will calculate the proper length of time to run the pump based on several factors, including fluid viscosity and height of release.

It really is an impressive system, and while his needs are very precise, we imagine this sort of setup would be quite useful in building less complicated dispensers, such as those found in an automated bar.

Continue reading to see a few videos of his Nano-doser in action.

Continue reading “Automated Aquarium Chemical Dispenser Is Extremely Precise”