Testing Large Language Models For Circuit Board Design Aid

Beyond bothering large language models (LLMs) with funny questions, there’s the general idea that they can act as supporting tools. Theoretically they should be able to assist with parsing and summarizing documents, while answering questions about e.g. electronic design. To test this assumption, [Duncan Haldane] employed three of the more highly praised LLMs to assist with circuit board design. These LLMs were GPT-4o (OpenAI), Claude 3 Opus (Anthropic) and Gemini 1.5 (Google).

The tasks ranged from ‘stupid questions’, like asking the delay per unit length of a trace on a PCB, to finding parts for a design, to designing an entire circuit. Of these tasks, only the ‘parsing datasheets’ task could be considered to be successful. This involved uploading the datasheet for a component (nRF5340) and asking the LLM to make a symbol and footprint, in this case for the text-centric JITX format but KiCad/Altium should be possible too. This did require a few passes, as there were glitches and omissions in the generated footprint.

When it came to picking components for a design, it’s clear that you’re out of luck here unless you’re trying to create a design that a million others have made before you in exactly the same way. This problem got worse when trying to design a circuit and ultimately spit out a netlist, with the best LLM (Claude 3 Opus) giving nonsensical suggestions for filter designs and mucking up even basic amplifier designs, including by sticking decoupling capacitors and random resistors just about everywhere.

Effectively, as a text searching tool it would seem that LLMs can have some use for engineers who are tired of digging through yet another few hundred pages of poorly formatted and non-indexed PDF datasheets, but you still need to be on your toes with every step of the way, as the output from the LLM will all too often be slightly to hilariously wrong.

Kaffa Roastery founder Svante Hampf shows a bag of their AI-conic coffee blend.

AI-Created Coffee Blend Isn’t Terrible

Weren’t we just talking about coffee-based sacrilege the other day? Here’s something to make the single-origin bean snobs chew their espresso cups: an artisan roastery in Helsinki is offering a coffee blend created by artificial intelligence called AI-conic. The idea, of course, is that technology will lighten the workload needed to produce coffee.

This is an interesting development because Finland consumes the most coffee in the world, according to the International Coffee Organization. Coffee roasting is a highly-valued traditional artisan profession there, so it stands to reason that they might turn to technology for help.

Just like with scotch whisky, there’s nothing wrong with coffee blends outright. Bean blends are good for consistency, when you want every cup to taste pretty much exactly the same. Single-origin beans, though, are traceable to one location, and as a result, they usually have a distinct flavor based on the climate they’re grown in.

If you’re new to coffee, blends are a nice, safe way to start out. And, interestingly, the AI chose to make the blend out of four different types of beans instead of the usual two or three, despite being tasked with creating a blend that would suit the palates of coffee enthusiasts. But the coffee experts agreed that the AI blend was “perfect” and needed no human intervention. We probably won’t be getting to Finland anytime soon, so if you try it, let us know how it tastes!

Do you like cold brew? How would you like to be able to brew some in just three minutes?

AI + LEGO = A Brickton Of Ideas

What if there was some magic device that could somehow scan all your LEGO and tell you what you can make with it? It’s a childhood dream come true, right? Well, that device is in your pocket. Just dump out your LEGO stash on the carpet, spread it out so there’s only one layer, scan it with your phone, and after a short wait, you get a list of all the the fun things you can make. With building instructions. And oh yeah, it shows you where each brick is in the pile.

We are talking about the BrickIt app, which is available for Android and Apple. Check it out in the short demo after the break. Having personally tried the app, we can say it does what it says it does and is in fact quite cool.

As much as it may pain you to have to pick up all those bricks when you’re finished, it really does work better against a neutral background like light-colored carpet. In an attempt to keep the bricks corralled, we tried a wooden tray, and it didn’t seem to be working as well as it probably could have — it didn’t hold that many bricks, and they couldn’t be spread out that far.

And the only real downside is that results are limited because there’s a paid version. And the app is kind of constantly reminding you of what you’re missing out on. But it’s still really, really cool, so check it out.

We don’t have to tell you how versatile LEGO is. But have you seen this keyboard stand, or this PCB vise?

Continue reading “AI + LEGO = A Brickton Of Ideas”

Generative AI Now Encroaching On Music

While it might not seem like it to a novice, music turns out to be a highly mathematical endeavor with precise ratios between chords and notes as well as overall structure of rhythm and timing. This is especially true of popular music which has even more recognizable repeating patterns and trends, making it unfortunately an easy target for modern generative AI which is capable of analyzing huge amounts of data and creating arguably unique creations. This one, called Suno, does just that for better or worse.

Unlike other generative AI offerings that are currently available for creating music, this one is not only capable of generating the musical underpinnings of the song itself but can additionally create a layer of intelligible vocals as well. A deeper investigation of the technology by Rolling Stone found that the tool uses its own models to come up with the music and then offloads the text generation for the vocals to ChatGPT, finally using the generated lyrics to generate fairly convincing vocals. Like image and text generation models that have come out in the last few years, this has the potential to be significantly disruptive.

While we’re not particularly excited about living in a world where humans toil while the machines create art and not the other way around, at best we could hope for a world where real musicians use these models as tools to enhance their creativity rather than being outright substitutes, much like ChatGPT itself currently is for programmers. That might be an overly optimistic view, though, and only time will tell.

Reggaeton-Be-Gone Disconnects Obnoxious Bluetooth Speakers

If you’re currently living outside of a Spanish-speaking country, it’s possible you’ve only heard of the music genre Reggaeton in passing, if at all. In places with large Spanish populations, though, it would be more surprising if you hadn’t heard it. It’s so popular especially in the Carribean and Latin America that it’s gotten on the nerves of some, most notably [Roni] whose neighbor might not do anything else but listen to this style of music, which can be heard through the walls. To solve the problem [Roni] is now introducing the Reggaeton-Be-Gone. (Google Translate from Spanish)

Inspired by the TV-B-Gone devices which purported to be able to turn off annoying TVs in bars, restaurants, and other places, this device can listen to music being played in the surrounding area and identify whether or not it is hearing Reggaeton. It does this using machine learning, taking samples of the audio it hears and making decisions based on a trained model. When the software, running on a Raspberry Pi, makes a positive identification of one of these songs, it looks for Bluetooth devices in the area and attempts to communicate with them in a number of ways, hopefully rapidly enough to disrupt their intended connections.

In testing with [Roni]’s neighbor, the device seems to show promise although it doesn’t completely disconnect the speaker from its host, instead only interfering with it enough for the neighbor to change locations. Clearly it merits further testing, and possibly other models trained for people who use Bluetooth speakers when skiing, hiking, or working out. Eventually the code will be posted to this GitHub page, but until then it’s not the only way to interfere with your neighbor’s annoying stereo.

Thanks to [BaldPower] and [Alfredo] for the tips!

The ELIZA Archaeology Project: Uncovering The Original ELIZA

Since ELIZA was created by [Joseph Weizenbaum] in the 1960s, its success had led to many variations and ports being written over the intervening decades. The goal of the ELIZA Archaeology Project by Stanford, USC, Oxford and other university teams is to explore and uncover as much of this history as possible, starting with the original 1960s code. As noted in a recent blog post by [Anthony Hay], most of the intervening ‘ELIZA’ versions seem to have been more inspired by the original rather than accurate replicas or extensions of the original. This raises the question of what the original program really looked like, a question which wasn’t answered until 2020 when the original source code was rediscovered. Continue reading “The ELIZA Archaeology Project: Uncovering The Original ELIZA”

Human-Written Or Machine-Generated: Finding Intelligence In Language Models

What is the essential element which separates a text written by a human being from a text which has been generated by an algorithm, when said algorithm uses a massive database of human-written texts as its input? This would seem to be the fundamental struggle which society currently deals with, as the prospect of a future looms in which students can have essays auto-generated from large language models (LLMs) and authors can churn out books by the dozen without doing more than asking said algorithm to write it for them, using nothing more than a query containing the desired contents as the human inputs.

Due to the immense amount of human-generated text in such an LLM, in its output there’s a definite overlap between machine-generated text and the average prose by a human author. Statistical methods of detecting the former are also increasingly hamstrung by the human developers and other human workers behind these text-generating algorithms, creating just enough human-like randomness in the algorithm’s predictive vocabulary to convince the casual reader that it was written by a fellow human.

Perhaps the best way to detect machine-generated text may just be found in that one quality that these algorithms are often advertised with, yet which they in reality are completely devoid of: intelligence.

Continue reading “Human-Written Or Machine-Generated: Finding Intelligence In Language Models”