At first glance, trying to play chess against a large language model (LLM) seems like a daft idea, as its weighted nodes have, at most, been trained on some chess-adjacent texts. It has no concept of board state, stratagems, or even whatever a ‘rook’ or ‘knight’ piece is. This daftness is indeed demonstrated by [Dynomight] in a recent blog post (Substack version), where the Stockfish chess AI is pitted against a range of LLMs, from a small Llama model to GPT-3.5. Although the outcomes (see featured image) are largely as you’d expect, there is one surprise: the gpt-3.5-turbo-instruct
model, which seems quite capable of giving Stockfish a run for its money, albeit on Stockfish’s lower settings.
Each model was given the same query, telling it to be a chess grandmaster, to use standard notation, and to choose its next move. The stark difference between the instruct model and the others calls investigation. OpenAI describes the instruct model as an ‘InstructGPT 3.5 class model’, which leads us to this page on OpenAI’s site and an associated 2022 paper that describes how InstructGPT is effectively the standard GPT LLM model heavily fine-tuned using human feedback.
Continue reading “Playing Chess Against LLMs And The Mystery Of Instruct Models”