The Chess Computer From 1912

Who was [Leonardo Torres Quevedo]? Not exactly a household name, but as [IEEE Spectrum] points out, he invented a chess automaton in 1920 that would foreshadow the next century’s obsession with computers playing chess.

Don’t confuse this with the infamous Mechanical Turk, which appeared to be a chess computer but was really a guy hiding inside a fake chess computer. The Spanish engineer’s machine really did play a modified end game. The chessboard was vertical, and pegs represented pieces. There were mechanical arms to move the pegs. The device actually dates back to 1912, with a public demonstration in Paris in 1914. Given [Quevedo’s] native language, the machine was called El Ajedrecista.

Continue reading “The Chess Computer From 1912”

A Chess AI In Only 4K Of Memory

The first computer to ever beat a reigning chess world champion didn’t do so until 1996 when a supercomputer built by IBM beat Garry Kasparov. But anyone who wasn’t a chess Grandmaster could have been getting beaten by chess programs as early as 1979 when Atari released one of the first ever commercially-available chess video games for the Atari 2600. The game was called Video Chess and despite some quirky gameplay it is quite impressive that it was able to run on the limited Atari hardware at all as [Oscar] demonstrates.

The first steps of getting under the hood of this program involved looking into the mapping of the pieces and the board positions in memory. After analyzing some more of the gameplay, [Oscar] discovered that the game does not use trees and nodes to make decisions, likely due to the memory limitations, but rather simulates the entire game and then analyzes it to determine the next step. When the game detects that there are not many pieces left on the board it can actually increase the amount of analysis it does in order to corner the opposing king, and has some unique algorithms in place to handle things like castling, finishing the game, and determining valid movements.

Originally it was thought that this engine couldn’t fit in the 4K of ROM or work within the 128 bytes of system memory, and that it was optimized for the system after first developing a game with some expanded capabilities. The game also has a reputation for making illegal moves in the higher difficulty settings although [Oscar] couldn’t reproduce these bugs. He also didn’t get into any of the tricks the game employed just to display all of the pieces on the screen. The AI in the Atari game was a feat for its time, but in the modern world the Stockfish open-source chess engine allows for a much more expanded gameplay experience.

Wood game piece being carved by a CNC mill with a hacked rotary axis

This $12 CNC Rotary Axis Will Make Your Head Spin

[legolor] brings us a great, cheap rotary axis to add to your small 3 axis CNC mills. How are you going to generate G-Code for this 4th axis? That’s the great part, and the hack, that [legolor] really just swapped the Y axis for the rotation. To finish the workflow and keep things cheap accessible to all there’s a great trick to “unwrap” your 3D model so your CAM software of choice thinks it’s still using a linear Y axis and keeps your existing workflow largely intact. While this requires an extra step in Blender to do the unwrapping, we love the way this hack changes as little of the rest of your process as possible. The Blender script might be useful for many other purposes too.

Wood game pieces carved from wood by a CNC mill with a hacked rotary axis

The results speak for themselves too! We thought the 3D printed parts were suspect in a CNC setup, but for the small scale of game pieces and milling wood, the setup is stable enough to produce a surprisingly accurate and detailed finish. If you want to try the same approach with something larger or a tougher material, [legolor] has a suggestion of a tailstock setup that’s still under $100 USD. Continue reading “This $12 CNC Rotary Axis Will Make Your Head Spin”

A metal watch is held in a man's fingers. The watchface has a laser etched chess board with miniature chess pieces made of brass enacting a match. The time is told on an etched chess clock to the right hand side of the timepiece and a small window on the rightmost "clock" shows the date.

A Little Chess With Your Timepiece

Some things remain classics, even after centuries, and chess and watches have certainly stood the test of time. [W&M Levsha] decided to combine them both in this “Chess Club” watch containing a miniature chess game frozen in time.

[W&M Levsha] used an off-the-shelf wristwatch for the mechanism and case, but rearranged the parts and built a custom watchface that’s much nicer than the original. The new watchface was cut and etched on a fiber laser after disassembly of the original watch.

The real magic happens when [W&M Levsha] turns those teeny little chess pieces on the lathe. The knight was a two piece affair with the horse head being laser cut out of brass sheet and then soldered onto a turned base. As you can see from the video embedded below, all of the chess pieces inside the watch could fit on the maker’s fingernail! It’s probably a good thing that this tiny set isn’t playable since trying to play on a board that size would be an exercise in patience.

We’ve seen machined chess sets here before at a larger scale, but if you’re more into 3D printing, how about teaching your printer to play?

Continue reading “A Little Chess With Your Timepiece”

Electronic Shoe Explores Alleged Chess Misbehavior

A few months ago, a scandal erupted in the chess world which led to some pretty wild speculation around a specific chess player. We won’t go into any of the details except to say that there is virtually no physical evidence of any method this player allegedly used to cheat in a specific in-person chess match. But [Teddy Warner] and partner [Jack Hollingsworth] were interested in at least providing a proof-of-concept for how this cheating could have been done, though, and came up with this device which signals a chess player through a shoe.

The compact device is small enough to fit in the sole of one of the player’s shoes, and is powered by an ATtiny412 microcontroller paired with a HC-06 Bluetooth module. The electronics are fitted into a 3D printed case along with a small battery which can then be placed into the sole of a shoe, allowing the wearer to feel the vibrations from a small offset-weight motor. With a second person behind a laptop and armed with a chess engine, the opponent’s moves can be fed into the computer and the appropriate response telegraphed through the shoe to the player.

While [Teddy] and [Jack] considers the prototype a success in demonstrating the ease at which a device like this could be used, and have made everything related to this build open source, this iteration did have a number of issues including that the motor buzzing was noticeable during play, and that his chess engine made some bizarre choices in the end game. It also requires the complicity of a second person, which is something this other chess cheating machine does away with. They also note that it’s unlikely that any chess players at the highest levels use devices like these, and that other chess experts have found no evidence of any wrongdoing in this specific scandal.

Continue reading “Electronic Shoe Explores Alleged Chess Misbehavior”

Seeing If Cheating At Chess The Hard Way Is Even Possible

With all the salacious stories about a cheating scandal rocking the world of championship-level chess, you’d think that we’d have delved into the story at least a bit here on Hackaday, especially given the story’s technical angle. But we haven’t, and it’s not because we’re squeamish about the details of the alleged cheat; rather, it’s because it’s just too easy to pun your way through a story like this. The lowest-hanging fruit isn’t always the sweetest.

But, we’ll give it a go, and play this one completely straight as we look at an experiment to determine if it’s even possible to cheat in the specific way that has been alleged. For the uninitiated, 19-year-old grandmaster [Hans Niemann] stands accused of cheating, possible through the use of a remote-controlled sex toy secreted in his rectum. The idea would be for an accomplice to use the toy, which contains a vibrating motor that’s controlled by an app either via Bluetooth or WiFi, to send suggested moves to [Niemann] based on a chess-playing AI’s analysis of the game.

Whether [Niemann] cheated or not is not the concern here, but rather [Captain Steel]’s experiment is just a first-pass look at whether it would be possible to cheat using the proposed technology — and most importantly, not get caught. He tried to replicate the scanning regime [Niemann] is now subject to at tournaments based on the allegations to see if a stand-in for the sex toy — a haptic motor attached to an ESP32 — would be detectable through various thicknesses of flesh. Rather than showing the same dedication to craft that [Niemann] is alleged to have shown, [Captain Steel] used slices of baloney as a stand-in for human flesh. He then tried scanning for RF emissions from the device through increasing layers of luncheon meat. We won’t spoil the results, other than to say that baloney turns out to actually be good for something.

We’ve covered another less-invasive method of cheating before, which given the results above is probably more likely to be discovered.

Continue reading “Seeing If Cheating At Chess The Hard Way Is Even Possible”

How To Be A Stinkin’ Chess Cheat — Sockfish

[James Stanley] enjoys chess, isn’t terribly good at it, and has some dubious scruples. At least, that’s the setup for building Sockfish, a shoe-to-Pi interface to let you cheat at chess. We’re pretty sure only the first point is true, but the build is impressive all the same. It’s a pair of 3D printed shoe inserts, with two pressure-sensitive inputs on each insert, coupled with a vibration motor in each. Tap out your opponent’s moves during the game, and the Stockfish software will buzz instructions back to you. Just follow the instructions, and you too can be a chess master.

In practice things went a bit awry, as poking in encoded move data with one’s feet isn’t the easiest task, and discerning the subtle tickles on the toes is error-prone at best. [James] arranged a match against an unsuspecting friend (in the name of science), and managed to fat-finger (fat-toe?) the inputs on both games, leading to Sockfish instructing him to make illegal moves.

This seemed like too much cheating, even for [James], so he played the rest of each game on his own abilities, winning one of the two. Once the deed was done, our anti-hero gladly doffed his shoes to show off his gadgetry. After some debate, they concluded the device might “bring the game into disrepute” if used for greater evil. Naturally [James] is already working on an improved version.

Thanks to [Abe Tusk] for the tip!