Homebrew PH Meter Uses Antimony Electrode

Understanding the nature of pH has bedeviled beginning (and not-so-beginning) chemistry students for nearly as long as chemistry has had students. It all seems so arbitrary, being the base-10 log of the inverse of hydrogen ion concentration and with a measurement range of 0 to 14. Add to that the electrochemical reactions needed to measure pH electronically, and it’s enough to make your head spin.

Difficulties aside, [Markus Bindhammer] decided to tackle the topic and came up with this interesting digital pH meter as a result. Measuring pH electronically is all about the electrode, or rather a pair of electrodes, one of which is a reference electrode. The potential difference between the electrodes when dipped into the solution under test correlates to the pH of the solution. [Markus] created his electrode by drawing molten antimony into a length of borosilicate glass tubing containing a solid copper wire as a terminal. The reference electrode was made from another piece of glass tubing, also with a copper terminal but filled with a saturated solution of copper(II) sulfate and plugged with a wooden skewer soaked in potassium nitrate.

In theory, this electrode system should result in a linear correlation between the pH of the test solution and the potential difference between the electrodes, easily measured with a multimeter. [Marb]’s results were a little different, though, leading him to use a microcontroller to scale the electrode output and display the pH on an OLED.

The relaxing video below shows the build process and more detail on the electrochemistry involved. It might be worth getting your head around this, since liquid metal batteries based on antimony are becoming a thing.

Continue reading “Homebrew PH Meter Uses Antimony Electrode”

Micromachining Glass With A Laser — Very, Very Slowly

When it comes to machining, the material that springs to mind is likely to be aluminum, steel, or plastic. We don’t necessarily think of glass as a material suitable for machining, at least not in the chuck-it-up-in-the-lathe sense. But glass is a material that needs to be shaped, too, and there are a bunch of different ways to accomplish that. Few, though, are as interesting as micromachining glass with laser-induced plasma bubbles. (Video, embedded below.)

The video below is from [Zachary Tong]. It runs a bit on the longish side, but we found it just chock full of information. The process, formally known as “laser-induced backside wet-etching,” uses a laser to blast away at a tank of copper sulfate. When a piece of glass is suspended on the surface of the solution and the laser is focused through the glass from the top, some interesting things happen.

The first pulse of the laser vaporizes the solution and decomposes the copper sulfate. Copper adsorbs onto the glass surface inside the protective vapor bubble, which lasts long enough for a second laser pulse to come along. That pulse heats up the adsorbed copper and the vapor in the original bubble, enough to melt a tiny bit of the glass. As the process is repeated, small features are slowly etched into the underside of the glass. [Zachary] demonstrates all this in the video, as well as what can go wrong when the settings are a bit off. There’s also some great high-speed footage of the process that’s worth the price of admission alone.

We doubt this process will be a mainstream method anytime soon, not least because it requires a 50-Watt Nd:YAG fiber laser. But it’s an interesting process that reminds us of [Zachary]’s other laser explorations, like using a laser and Kapton to make graphene supercapacitors.

Continue reading “Micromachining Glass With A Laser — Very, Very Slowly”

Chemistry And Lasers Turn Any Plastic Surface Into A PCB

On the face of it, PCB production seems to pretty much have been reduced to practice. Hobbyists have been etching their own boards forever, and the custom PCB fabrication market is rich with vendors whose capabilities span the gamut from dead simple one-side through-hole boards to the finest pitch multilayer SMD boards imaginable.

So why on Earth would we need yet another way to make PCBs? Because as [Ben Krasnow] points out, the ability to turn almost any plastic surface into a PCB can be really handy, and is not necessarily something the fab houses handle right now. The video below shows how [Ben] came up with his method, which went down a non-obvious path that was part chemistry experiment, part materials science. The basic idea is to use electroless copper plating, a method of depositing copper onto a substrate without using electrolysis.

This allows non-conductive substrates — [Ben] used small parts printed with a Formlabs SLA printer — to be plated with enough copper to form solderable traces. The chemistry involved in this is not trivial; there are catalysts and surfactants and saturated solutions of copper sulfate to manage. And even once he dialed that in, he had to figure out how to make traces and vias with a laser cutter. It was eventually successful, but it took a lot of work. Check out the video below to see how he got there, and where he plans to go next.

You’ve got to hand it to [Ben]; when he decides to explore something, he goes all in. We appreciate his dedication, whether he’s using candles to explore magnetohydrodynamics or making plasma with a high-speed jet of water.

Continue reading “Chemistry And Lasers Turn Any Plastic Surface Into A PCB”

The (Copper) Crystal Method

One of the staples of kitchen chemistry for kids is making sugar crystals or rock candy. Why not? It is educational and it tastes good, too. [Science with Screens] has a different kind of crystal in mind: copper crystals. You can see the result in the video below.

To grow pure metal crystals, he used copper wire and copper sulfate. He also used a special regulated power supply to create a low voltage to control the current used to form the crystal. The current needed to be no more than 10mA, and an LM317 holds the voltage constant. However, that regulator only goes as low as 1.25V, so diodes cut a volt off the output.

Continue reading “The (Copper) Crystal Method”