DIY Active Sub-GHz Differential Scope Probe

Fancy measurement gear is often expensive to buy, but some bits of kit are entirely DIY’able if you’re willing to put a little work into the project. [Christer Weinigel] needed to get some measurements of a differential clock signal that was ticking away around 500 MHz. El-cheapo probes aren’t going to cut it here. They won’t have the bandwidth and most off-the-rack probes are single-ended, that is they’re referenced to ground. [Christer] needed the difference between two balanced signals, neither of which is grounded. In short, [Christer] needed a high-frequency active differential oscilloscope probe, and they’re not cheap. So he built one himself.

simulation-schematicThe circuit in the probe is really just an instrumentation amplifier design with a modified input stage and a 50 ohm output impedance. (See this article on in-amps if you need to brush up.) With higher frequencies like this, it’s going to be demanding on the op-amp, so [Christer] spent some time simulating the circuit to make sure it would work with his chosen part. Then he made up a bunch of PCB designs and had them made. Actual results matched fairly well with the simulation.

With some minor tweaking on the input damping resistors, he got a tool that’s dead flat up to 300 MHz, and totally usable up to 850 MHz. If you tried to buy one of these, it’d set you back the cost of a few hundred lattes, but this one can be made for the price of one or two if you get the PCBs done cheaply. Of course, the design files are available for your own use. Kudos [Christer].

Edit: By total coincidence, Bil Herd just posted a video intro to differential signals. Go check it out.

And thanks to [nebk] for the tip!

Sit ‘n Spin For Big Kids

Humans seem to have a strange love affair with testing their limits, especially when it comes to spinning. Perhaps they ride the Gravitron while dreaming they’re in NASA’s 20 g test centrifuge. When carnival rides aren’t enough though, a few intrepid hackers bust out the welders and take matters into their own hands. This is a hack that goes by many names, though  “The Redneck Spin Chair” will bring up plenty of hits on YouTube.

The design is dead simple. Take a rear differential and axle assembly out of an old car or truck. Rotate it 90 degrees, so the diff is now pointing up. Weld a chair on. Finally, weld on a couple of tow bars. Pulling the whole mess will cause the wheels to spin, which transmits power through the differential and rotates the chair. The ride doesn’t have be pulled very fast, as automotive differentials generally have reduction between 3:1 and 5:1. We’re running things in reverse, so that reduction becomes a multiplier. The result, which can be seen in the video below is a very dizzy rider.

The earliest incarnation of this ride we could find was created at Eagle Mountain in Burtrum, Minnesota. We’re betting this particular hack has been around for decades longer though. The closest in our recent memory is North Street Labs’ Centrifury. Do you know of an earlier incarnation? Let us know in the comments!

Continue reading “Sit ‘n Spin For Big Kids”

Retrotechtacular: Fire Control Computers In Navy Ships

Here is a two-part Navy training film from 1953 that describes the inner workings of mechanical fire control computers. It covers seven mechanisms: shafts, gears, cams, differentials, component solvers, integrators, and multipliers, and does so in the well-executed fashion typical of the era.

Fire control systems depend on many factors that occur simultaneously, not the least of which are own ship’s speed and course, distance to a target, bearing, the target’s speed and course if not stationary, initial shell velocity, and wind speed and direction.

The mechanisms are introduced with a rack and pinion demonstration in two dimensions. Principally speaking, a shaft carries a value based on revolutions. From this, a system can be geared at different ratios.

Cams take this idea further, transferring a regular motion such as rotation to an irregular motion. They do so using a working surface as input and a follower as output. We are shown how cams change rotary motion to linear motion. While the simplest example is limited to a single revolution, additional revolutions can be obtained by extending the working surface. This is usually done with a ball in a groove.

Continue reading “Retrotechtacular: Fire Control Computers In Navy Ships”

Hackaday Links: September 28, 2014

hackaday-links-chain

Kyocera is vastly expanding their product lineup with the Shop Sink 3530. The perfect addition to your copiers, fax machines, and laser printers.

About a year and a half ago and with objections from the editorial staff, we did a Top 10 hacking fails in movies and TV post. The number one fail is, “Stupid crime shows like NCIS, CSI, and Bones.” A new show on CBS just topped this list. It’s named Scorpion, and wow. Dropping a Cat5 cable from an airplane doing an almost-touch-and-go because something is wrong with the computers in the tower. Four million adults age 18-49 watched this.

thing[Derek] found something that really looks like the Hackaday logo in a spacer of some kind. It’s been sitting on his shelf for a few months, and is only now sending it in. He picked it up in a pile of scrap metal, and he (and we) really have no idea what this thing is. Any guesses?

[Sheldon] has a teardown of a vintage voltage and current standard. Just look at those hand drawn traces on a single sided board. Beautiful.

[Art] has another, ‘what is this thing’. He has two of them, and he’s pretty sure it’s some sort of differential, but other than that he’s got nothing. The only real clue is that [Art] lives near a harbor on the N. Cali coast. Maybe from a navigation system, or a governor from a weird diesel?

So you have a Kinect sitting on a shelf somewhere. That’s fine, we completely understand that. Here’s something: freeze yourself in carbonite. Yeah, it turns out having a depth sensor is exactly what you need to make a carbonite copy of yourself.

Retrotechtacular: The Differential

Any video that starts off with two minutes of motorcycle formation riding has got to be good. If the grainy black and white video didn’t tip you off that this was made in a different time the helmetless riders standing on the seats of moving motorcycles certainly would have. But there is a purpose to this exposition. A single line of motorcycles riding shoulder to shoulder as they go around a curve illustrates why a differential is necessary and soon after you’ll find out how one works.

Two wheels mounted on one axle need to turn at different speeds as a vehicle goes around a corner or one of the wheels must slip to accommodate the speed difference. The differential is necessary to allow for these different turning rates while still letting both wheels connect to the power train. We were surprised to learn from the video after the break that early automobiles got around this issues by powering only one of the four wheels.

This instructional video is a prefect compliment to the fluid coupling video we saw in the last installment of Retrotechtacular.

Continue reading “Retrotechtacular: The Differential”

Wooden Machine Belongs In Willy Wonka’s Factory

Behold the wooden machine (translated) that is used for… well it does… it was built because… Okay, this is a case where asking what it does or why it was built is the wrong question. [Erich Schatt] began building the piece that he calls “Wheels” back in 1995. It took just seven years to complete, and is made entirely of wood. The video after the break shows a multitude of moving parts.

The chains were modeled after bicycle chains, which are used to transfer motion from the “rider” throughout the machine. The gearing for each segment was meticulously calculated, then perfected through trial and error. The complexity even calls for a differential and universal joints. It’s mesmerizing to watch and for that reason it’s made appearances at conventions and been featured in art exhibitions.

It’s also worth mentioning that this comes from a very humble-looking shop. [Erich] posted some pictures of his studio and aside from the abundance of bar clamps, it’s just your average garage or basement setup.

Continue reading “Wooden Machine Belongs In Willy Wonka’s Factory”