Two images side by side. One shows a laptop opened to a map view with a vehicle model showing a vehicles location. A transparent overlay shows various blue-ish buttons for sending commands to the vehicle. The image on the right is of the interior of a Nissan Leaf. Visible are the very edge of the steering wheel, the center dash including the infotainment display, vents, and shifter, and part of the right side of the dash. Passenger and driver legs are just barely visible at the bottom of the image.

Hack Turns Nissan Leaf Into Giant RC Car

As cars increasingly become computers on wheels, the attack surface for digital malfeasance increases. The [PCAutomotive] group shared their exploit for turning the 2020 Nissan Leaf into 1600 kg RC car at Black Hat Asia 2025.

Starting with some scavenged infotainment systems and wiring harnesses, the group built test benches able to tear into vulnerabilities in the system. An exploit was found in the infotainment system’s Bluetooth implementation, and they used this to gain access to the rest of the system. By jamming the 2.4 GHz spectrum, the attacker can nudge the driver to open the Bluetooth connection menu on the vehicle to see why their phone isn’t connecting. If this menu is open, pairing can be completed without further user interaction.

Once the attacker gains access, they can control many vehicle functions, such as steering, braking, windshield wipers, and mirrors. It also allows remote monitoring of the vehicle through GPS and recording audio in the cabin. The vulnerabilities were all disclosed to Nissan before public release, so be sure to keep your infotainment system up-to-date!

If this feels familiar, we featured a similar hack on Tesla infotainment systems. If you’d like to hack your Leaf for the better, we’ve also covered how to fix some of the vehicle’s charging flaws, but we can’t help you with the loss of app support for early models.

Continue reading “Hack Turns Nissan Leaf Into Giant RC Car”

A dark warehouse contains a number of large blocky objects. A Tesla Model 3 sedan sits in the center with flames underneath and curling up the side away from the camera. A firefighter on the left side attempts to put out the fire with a fire hose.

UL Investigates The Best Way To Fight EV Fires

While electric vehicles (EVs) are generally less likely to catch fire than their internal combustion counterparts, it does still happen, and firefighters need to be ready. Accordingly, the UL Research Institute is working with reverse engineering experts Munro & Associates to characterize EV fires and find the best way to fight them.

There is currently some debate in the firefighting community over whether it’s better to try to put an EV battery fire out with water or to just let it burn. Research like this means the decision doesn’t have to fall on only anecdotal evidence. Anyone who’s worked in a lab will recognize the mix of exceedingly expensive equipment next to the borderline sketchy rigged up hacks on display, in this case the super nice thermal imagers and a “turkey burner on steroids.” The video goes through some discussion of the previous results with a Chevy Bolt, Hyundai Kona, Ford Mustang Mach E, and then we get to see them light up a Tesla Model 3. This is definitely one you shouldn’t try at home!

While the massive battery banks in modern EVs can pose unique challenges in the event of an accident, that doesn’t mean they can’t be repurposed to backup your own home.

Continue reading “UL Investigates The Best Way To Fight EV Fires”

Electric Vehicle Charging Heats Up

As the electric vehicle takeover slowly lumbers along, marginally increasing efficiencies for certain applications while entrenching car-centric urban design even further, there are some knock-on effects that are benefiting people and infrastructure beyond simple transportation. Vehicle-to-grid technology has applications for providing energy from the car back to the grid for things like power outages or grid leveling. But [Technology Connections] is taking this logic one step further. Since a large number of EV owners have charging stations built into their garages, he wondered if these charging stations could be used for other tasks and built an electric heater which can use one for power.

This project uses a level 2 charger, capable of delivering many kilowatts of power to an EV over fairly standard 240V home wiring with a smart controller in between that and the car. Compared to a level 1 charger which can only trickle charge a car on a standard 120V outlet (in the US) or a DC fast charger which can provide a truly tremendous amount of energy in a very short time, these are a happy middle ground. So, while it’s true a homeowner could simply wire up another 240V outlet for this type of space heater or other similar application, this project uses the existing infrastructure of the home to avoid redundancies like that.

Of course this isn’t exactly plug-and-play. Car chargers communicate with vehicles to negotiate power capabilities with each other, so any appliance wanting to use one as a bulk electric supply needs to be able to perform this negotiation. To get the full power available in this case all that’s needed is a resistor connected to one of the signal wires, but this won’t work for all cases and could overload smaller charging stations. For that a more complex signalling method is needed, but since this was more of a proof-of-concept we’ll still call it a success. For those wanting to DIY the charger itself, building one from the ground up is fairly straightforward as well.

Thanks to [Billy] for the tip!

Continue reading “Electric Vehicle Charging Heats Up”

Thermal Runaway: Solving The Bane Of Electric Vehicles

Although battery fires in electric cars and two-wheeled vehicles are not a common phenomenon, they are notoriously hard to put out, requiring special training and equipment by firefighters. Although the full scope of the issue is part of a contentious debate, [Aarian Marshall] over at Wired recently wrote an article about how the electric car industry has a plan to make a purportedly minor issue even less of an issue. Here the questions seem to be mostly about what the true statistics are for battery fires and what can be done about the primary issue with batteries: thermal runaway.

While the Wired article references a study by a car insurance company about the incidence of car fires by fuel type (gas, hybrid, electric), its cited sources are dubious as the NTSB nor NHTSA collect statistics on these fires. The NFPA does, but this only gets you up to 2018, and they note that the data gathering here is spotty. Better data is found from European sources, which makes clear that battery electric vehicles (BEVs) catch fire less often than gasoline cars at 25 per 100,000 cars sold vs 1529/100k for ICE cars, but when BEVs do burn it’s most often (60%) from thermal runaway, which can be due to factors like a short circuit in a cell, overcharging and high ambient temperatures (including from arson or after-effects of a car crash). Continue reading “Thermal Runaway: Solving The Bane Of Electric Vehicles”

A yellow, three wheeled vehicle with a canopy that opens upward over the body. It looks a little like the cockpit of a jet figher.

Restoring A Vintage German EV

When you think of EVs from the 90s, GM’s EV1 may come to mind, but [bleeptrack] found a more obscure CityEL three wheeler to restore.

This Personal Electric Vehicle (PEV) is no spring chicken, but a new set of LiFePO4 batteries should give its 48 V electrical system a new lease on life. [bleeptrack] shows us through the cockpit of this jet fighter-esque EV and its simple control systems, including a forward and reverse selector and the appreciable kilometers on the odometer.

Modernizing touches for this vehicle include a smart shunt to track the vehicle charge level as an improvement over the wildly unreliable original system and a new DC to DC converter after the original unit failed. These changes really cleaned up the electronics compartment from the original rat’s nest under the seat.

The design of this vehicle has us thinking of the Minimal Motoring Manifesto and how EVs could make cars simpler again.

Continue reading “Restoring A Vintage German EV”

A finger points at a stack of yellow plastic plates sandwiched together like on a bookshelf. A grey metal rectangle holds the top together and black plastic sticks off to the left. The top of the pack has copper and nickel (or some other silver-colored metal) tabs pointing up out of the assembly.

Tearing Into A Sparky Sandwich

We’re still in the early days of modern EV infrastructure, so minor issues can lead to a full high voltage pack replacement given the lack of high voltage-trained mechanics. [Ed’s Garage] was able to source a Spark EV battery pack that had succumbed to a single bad cell and takes us along for the disassembly of the faulty module.

The Spark EV was the predecessor to the more well-known Chevy Bolt, so its nearly ten year old systems might not reflect the state-of-the-art in EV batteries, but they are certainly more modern than the battery in your great-grandmother’s Baker Electric. The Li-ion polymer pouch cells are sandwiched together with cooling and shock absorbing panels to keep the cells healthy and happy, at least in theory.

In a previous video, [Ed’s Garage] takes apart the full pack and shows how the last 2P16S module has assumed a darker color on its yellow plastic, seeming to indicate that it wasn’t receiving sufficient cooling during its life in the car. It would seem that the cooling plates inside the module weren’t quite up to the task. These cells are destined for other projects, but it doesn’t seem like this particular type of battery module would be too difficult to reassemble and put back in a car as long as you could get the right torque settings for the compression bolts.

If you’re looking for other EV teardowns, might we suggest this Tesla Model S pack or one from a passively-cooled Nissan Leaf?

Continue reading “Tearing Into A Sparky Sandwich”

Two researchers, a white woman and dark-skinned man look at a large monitor with a crystal structure displayed in red and white blocks.

AI On The Hunt For Better Batteries

While certain dystopian visions of the future have humans power the grid for AIs, Microsoft and Pacific Northwest National Laboratory (PNNL) set a machine learning system on the path of better solid state batteries instead.

Solid state batteries are the current darlings of battery research, promising a step-change in packaging size and safety among other advantages. While they have been working in the lab for some time now, we’re still yet to see any large-scale commercialization that could shake up the consumer electronics and electric vehicle spaces.

With a starting set of 32 million potential inorganic materials, the machine learning algorithm was able to select the 150 most promising candidates for further development in the lab. This smaller subset was then fed through a high-performance computing (HPC) algorithm to winnow the list down to 23. Eliminating previously explored compounds, the scientists were able to develop a promising Li/Na-ion solid state battery electrolyte that could reduce the needed Li in a battery by up to 70%.

For those of us who remember when energy materials research often consisted of digging through dusty old journal papers to find inorganic compounds of interest, this is a particularly exciting advancement. A couple more places technology can help in the sciences are robots doing the work in the lab or on the surgery table.

Continue reading “AI On The Hunt For Better Batteries”